Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlowOnSpark (readme翻訳)

Posted on 02/14/2017 by Sales Information

TensorFlowOnSpark (readme 翻訳)
翻訳 : (株)クラスキャット セールスインフォメーション
日時 : 02/14/2017

* 本ページは、github TensorFlowOnSpark の readme を翻訳したものです:
    https://github.com/yahoo/TensorFlowOnSpark/blob/master/README.md

 

TensorFlowOnSpark とは何か?

TensorFlowOnSpark はスケーラブルな深層学習を Apache Hadoop と Apache Spark にもたらしました。深層学習フレームワーク TensorFlow とビッグデータ・フレームワーク Apache Spark / Apache Hadoop 由来の顕著な特徴を結合することにより、TensorFlowOnSpark は GPU と CPU サーバ・クラスタ上の分散深層学習を可能にします。

TensorFlowOnSpark は Apache Spark クラスタ上の分散 TensorFlow トレーニングと推論を可能にします。それは共有グリッド上にある TensorFlow プログラムを実行するために必要なコード変更の総量を最小化するように努めます。その Spark 互換な API は TensorFlow クラスタを次のステップで管理することを手助けします :

  1. Reservation(予約) – 各 executor 上の TensorFlow プロセスのためのポートを予約し、また data/control メッセージのためのリスナーを開始します。
  2. Startup – executor 上で TensorFlow main 関数を launch します。
  3. データ摂取 (Data ingestion)
    • Readers & QueueRunners – TensorFlow の Reader 機構を HDFS から直接データファイルを読むために進化させます。
    • Feeding – Spark RDD データを feed_dict 機構を使用して TensorFlow ノードへ送ります。HDFS 上の TFRecords へのアクセスのために Hadoop Input/Output フォーマットを改良している (= leverage) ことに注意してください。
  4. Shutdown – TensorFlow workers と executors 上の PS ノードを停止します。

Infiniband ネットワーク上のリモート・ダイレクトメモリアクセス (RDMA, direct access to remote memory) をサポートするためにもまた TensorFlow を拡張しました。

TensorFlowOnSpark は Yahoo のプライベート・クラウドの Hadoop クラスタ上で大規模な分散深層学習のために Yahoo により開発されました。

 

何故 TensorFlowOnSpark か?

TensorFlowOnSpark は他の選択肢の深層学習ソリューションを超える幾つかの重要なメリット(ブログ 参照)を提供します。

  • <10 行のコード変更ですべての既存の TensorFlow プログラムを簡単に migrate します ;
  • すべての TensorFlow 機能をサポートします : 同期/非同期なトレーニング、モデル/データの並列処理、推論そして TensorBoard ;
  • サーバ to サーバのダイレクト・コミュニケーションが利用可能であれば、より高速な学習を達成します ;
  • HDFS 上と他のソース上のデータセットに Spark で push され TensorFlow で pull されることを可能にします ;
  • 貴方の既存のデータ処理パイプラインと機械学習アルゴリズム (ex. MLlib, CaffeOnSpark) を簡単に統合できます ;
  • クラウドでもオンプレでも簡単にデプロイされます: CPU & GPU, Ethernet そして Infiniband。
 

以上

クラスキャット

最近の投稿

  • LangGraph 0.5 on Colab : Get started : クイックスタート
  • LangGraph on Colab : SQL エージェントの構築
  • LangGraph on Colab : マルチエージェント・スーパーバイザー
  • LangGraph on Colab : エージェント型 RAG
  • LangGraph : 例題 : エージェント型 RAG

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2017年2月
月 火 水 木 金 土 日
 12345
6789101112
13141516171819
20212223242526
2728  
« 1月   3月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme