Keras 3 : Getting Started : エンジニアのための Keras 入門 (翻訳/解説)
翻訳 : クラスキャット セールスインフォメーション
作成日時 : 12/02/2023
* 本ページは、以下のドキュメントを翻訳した上で適宜、補足説明したものです:
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
- 人工知能研究開発支援
- 人工知能研修サービス(経営者層向けオンサイト研修)
- テクニカルコンサルティングサービス
- 実証実験(プロトタイプ構築)
- アプリケーションへの実装
- 人工知能研修サービス
- PoC(概念実証)を失敗させないための支援
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
- クラスキャット セールス・マーケティング本部 セールス・インフォメーション
- sales-info@classcat.com ; Website: www.classcat.com ; ClassCatJP
Keras 3 : Getting Started : エンジニアのための Keras 入門
イントロダクション
Keras 3 は TensorFlow, JAX と PyTorch と交換可能に (interchangeably) 動作する深層学習フレームワークです。このノートブックは主要な Keras 3 ワークフローを案内します。
セットアップ
ここでは JAX バックエンドを使用していきます — しかし下記の文字列を “tensorflow” または “torch” に編集して、「ランタイムを再起動」をクリックすると、ノートブック全体がちょうど同じように実行できます!このガイド全体はバックエンド不可知 (backend-agnostic) です。
import numpy as np
import os
os.environ["KERAS_BACKEND"] = "jax"
# Note that Keras should only be imported after the backend
# has been configured. The backend cannot be changed once the
# package is imported.
import keras
最初のサンプル: MNIST convnet
ML の Hello World から始めましょう: MNIST 数字を分類するために convnet を訓練します。
ここにデータがあります :
# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print("y_train shape:", y_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
x_train shape: (60000, 28, 28, 1) y_train shape: (60000,) 60000 train samples 10000 test samples
ここにモデルがあります。
Keras が提供する様々なモデル構築オプションは以下を含みます :
- シーケンシャル API (以下で使用するもの)
- 関数型 API (最も通常のもの)
- サブクラス化を通して独自のモデルを貴方自身で作成します (高度なユースケースのため)
# Model parameters
num_classes = 10
input_shape = (28, 28, 1)
model = keras.Sequential(
[
keras.layers.Input(shape=input_shape),
keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
keras.layers.GlobalAveragePooling2D(),
keras.layers.Dropout(0.5),
keras.layers.Dense(num_classes, activation="softmax"),
]
)
ここにモデル概要があります :
model.summary()
Model: "sequential" ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ conv2d (Conv2D) │ (None, 26, 26, 64) │ 640 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_1 (Conv2D) │ (None, 24, 24, 64) │ 36,928 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ max_pooling2d (MaxPooling2D) │ (None, 12, 12, 64) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_2 (Conv2D) │ (None, 10, 10, 128) │ 73,856 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ conv2d_3 (Conv2D) │ (None, 8, 8, 128) │ 147,584 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ global_average_pooling2d │ (None, 128) │ 0 │ │ (GlobalAveragePooling2D) │ │ │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout (Dropout) │ (None, 128) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense (Dense) │ (None, 10) │ 1,290 │ └─────────────────────────────────┴───────────────────────────┴────────────┘ Total params: 260,298 (1016.79 KB) Trainable params: 260,298 (1016.79 KB) Non-trainable params: 0 (0.00 B)
optimizer, 損失関数, そして監視するためのメトリクスを指定するために compile() メソッドを使用します。JAX と TensorFlow バックエンドでは、XLA コンパイルがデフォルトで有効になることに注意してください。
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(learning_rate=1e-3),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
],
)
モデルを訓練して評価しましょう。訓練中に未見データで汎化を監視するためにデータの 15% の検証分割を取り置きます。
batch_size = 128
epochs = 20
callbacks = [
keras.callbacks.ModelCheckpoint(filepath="model_at_epoch_{epoch}.keras"),
keras.callbacks.EarlyStopping(monitor="val_loss", patience=2),
]
model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
validation_split=0.15,
callbacks=callbacks,
)
score = model.evaluate(x_test, y_test, verbose=0)
Epoch 1/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 74s 184ms/step - acc: 0.4980 - loss: 1.3832 - val_acc: 0.9609 - val_loss: 0.1513 Epoch 2/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 74s 186ms/step - acc: 0.9245 - loss: 0.2487 - val_acc: 0.9702 - val_loss: 0.0999 Epoch 3/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 70s 175ms/step - acc: 0.9515 - loss: 0.1647 - val_acc: 0.9816 - val_loss: 0.0608 Epoch 4/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 69s 174ms/step - acc: 0.9622 - loss: 0.1247 - val_acc: 0.9833 - val_loss: 0.0541 Epoch 5/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 68s 171ms/step - acc: 0.9685 - loss: 0.1083 - val_acc: 0.9860 - val_loss: 0.0468 Epoch 6/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 70s 176ms/step - acc: 0.9710 - loss: 0.0955 - val_acc: 0.9897 - val_loss: 0.0400 Epoch 7/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 69s 172ms/step - acc: 0.9742 - loss: 0.0853 - val_acc: 0.9888 - val_loss: 0.0388 Epoch 8/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 68s 169ms/step - acc: 0.9789 - loss: 0.0738 - val_acc: 0.9902 - val_loss: 0.0387 Epoch 9/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 75s 187ms/step - acc: 0.9789 - loss: 0.0691 - val_acc: 0.9907 - val_loss: 0.0341 Epoch 10/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 77s 194ms/step - acc: 0.9806 - loss: 0.0636 - val_acc: 0.9907 - val_loss: 0.0348 Epoch 11/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 74s 186ms/step - acc: 0.9812 - loss: 0.0610 - val_acc: 0.9926 - val_loss: 0.0271 Epoch 12/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 219s 550ms/step - acc: 0.9820 - loss: 0.0590 - val_acc: 0.9912 - val_loss: 0.0294 Epoch 13/20 399/399 ━━━━━━━━━━━━━━━━━━━━ 70s 176ms/step - acc: 0.9843 - loss: 0.0504 - val_acc: 0.9918 - val_loss: 0.0316
訓練中、各エポックの最後にモデルをセーブしていました。このように最新の状態のモデルをセーブすることもできます :
model.save("final_model.keras")
そしてそれをこのように再ロードします :
model = keras.saving.load_model("final_model.keras")
次に、predict() でクラス確率の予測をクエリーできます :
predictions = model.predict(x_test)
313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 9ms/step
That’s it for the basics!
クロスフレームワークのカスタムコンポーネントの作成
Keras は、同じコードベースで TensorFlow, JAX 及び PyTorch に渡り動作するカスタム層、モデル、メトリクス、損失そして Optimizer を作成することを可能にします。最初にカスタム層を見てみましょう。
keras.ops 名前空間は以下を含みます :
- NumPy API の実装、例えば keras.ops.stack や keras.ops.matmul
- keras.ops.conv or keras.ops.binary_crossentropy のような、NumPy にはないニューラルネットワーク固有の ops のセット。
すべてのバックエンドで動作するカスタム Dense 層を作成しましょう :
class MyDense(keras.layers.Layer):
def __init__(self, units, activation=None, name=None):
super().__init__(name=name)
self.units = units
self.activation = keras.activations.get(activation)
def build(self, input_shape):
input_dim = input_shape[-1]
self.w = self.add_weight(
shape=(input_dim, self.units),
initializer=keras.initializers.GlorotNormal(),
name="kernel",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,),
initializer=keras.initializers.Zeros(),
name="bias",
trainable=True,
)
def call(self, inputs):
# Use Keras ops to create backend-agnostic layers/metrics/etc.
x = keras.ops.matmul(inputs, self.w) + self.b
return self.activation(x)
次に、keras.random 名前空間に依存する Dropout 層を作成しましょう :
class MyDropout(keras.layers.Layer):
def __init__(self, rate, name=None):
super().__init__(name=name)
self.rate = rate
# Use seed_generator for managing RNG state.
# It is a state element and its seed variable is
# tracked as part of `layer.variables`.
self.seed_generator = keras.random.SeedGenerator(1337)
def call(self, inputs):
# Use `keras.random` for random ops.
return keras.random.dropout(inputs, self.rate, seed=self.seed_generator)
次に、私たちの 2 つのカスタム層を使用するカスタムのサブクラス化モデルを作成しましょう :
class MyModel(keras.Model):
def __init__(self, num_classes):
super().__init__()
self.conv_base = keras.Sequential(
[
keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),
keras.layers.GlobalAveragePooling2D(),
]
)
self.dp = MyDropout(0.5)
self.dense = MyDense(num_classes, activation="softmax")
def call(self, x):
x = self.conv_base(x)
x = self.dp(x)
return self.dense(x)
Let’s compile it and fit it:
model = MyModel(num_classes=10)
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(learning_rate=1e-3),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
],
)
model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=1, # For speed
validation_split=0.15,
)
399/399 ━━━━━━━━━━━━━━━━━━━━ 70s 174ms/step - acc: 0.5104 - loss: 1.3473 - val_acc: 0.9256 - val_loss: 0.2484 <keras.src.callbacks.history.History at 0x105608670>
任意のデータソースでモデルを訓練
すべての Keras モデルは、使用しているバックエンドとは無関係に、広範囲のデータソースで訓練して評価することができます。これは以下を含みます :
- NumPy 配列
- Pandas データフレーム
- TensorFlow tf.data.Dataset オブジェクト
- PyTorch DataLoader オブジェクト
- Keras PyDataset オブジェクト
これらはすべて Keras バックエンドとして TensorFlow, JAX, or PyTorch のいずれを使用していても機能します。
PyTorch DataLoaders で試してみましょう :
import torch
# Create a TensorDataset
train_torch_dataset = torch.utils.data.TensorDataset(
torch.from_numpy(x_train), torch.from_numpy(y_train)
)
val_torch_dataset = torch.utils.data.TensorDataset(
torch.from_numpy(x_test), torch.from_numpy(y_test)
)
# Create a DataLoader
train_dataloader = torch.utils.data.DataLoader(
train_torch_dataset, batch_size=batch_size, shuffle=True
)
val_dataloader = torch.utils.data.DataLoader(
val_torch_dataset, batch_size=batch_size, shuffle=False
)
model = MyModel(num_classes=10)
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(learning_rate=1e-3),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
],
)
model.fit(train_dataloader, epochs=1, validation_data=val_dataloader)
469/469 ━━━━━━━━━━━━━━━━━━━━ 81s 172ms/step - acc: 0.5502 - loss: 1.2550 - val_acc: 0.9419 - val_loss: 0.1972 <keras.src.callbacks.history.History at 0x2b3385480>
Now let’s try this out with tf.data :
import tensorflow as tf
train_dataset = (
tf.data.Dataset.from_tensor_slices((x_train, y_train))
.batch(batch_size)
.prefetch(tf.data.AUTOTUNE)
)
test_dataset = (
tf.data.Dataset.from_tensor_slices((x_test, y_test))
.batch(batch_size)
.prefetch(tf.data.AUTOTUNE)
)
model = MyModel(num_classes=10)
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(learning_rate=1e-3),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
],
)
model.fit(train_dataset, epochs=1, validation_data=test_dataset)
469/469 ━━━━━━━━━━━━━━━━━━━━ 81s 172ms/step - acc: 0.5771 - loss: 1.1948 - val_acc: 0.9229 - val_loss: 0.2502 <keras.src.callbacks.history.History at 0x2b33e7df0>
以上