Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

OpenAI platform : ガイド : 画像生成 (DALL·E)

Posted on 07/25/202307/26/2023 by Sales Information

OpenAI platform : ガイド : 画像生成 (DALL·E) (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 07/25/2023

* 本ページは、以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Guides : Image generation

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

OpenAI platform : ガイド : 画像生成 (DALL·E)

画像を DALL·E で生成して操作する方法を学習します。

 

イントロダクション

画像 API は画像と相互作用するための 3 つの方法を提供しています :

  1. テキストプロンプトに基づいて画像をゼロから作成する
  2. 新しいテキストプロンプトに基づいて既存の画像の編集を作成する
  3. 既存の画像のバリエーションを作成する

このガイドはこれらの 3 つの API エンドポイントを使用する基本を、有用なコードサンプルとともにカバーします。それらを実際に見るには、DALL·E プレビュー app を確認してください。

 

使用方法

生成

画像生成エンドポイントはテキストプロンプトが与えられたときオリジナルな画像を作成することを可能にします。生成画像は 256×256, 512×512 または 1024×1024 ピクセルのサイズを持つことができます。より小さいサイズは生成が高速になります。n パラメータを使用して一度に 1-10 画像をリクエストできます。

response = openai.Image.create(
  prompt="a white siamese cat",
  n=1,
  size="1024x1024"
)
image_url = response['data'][0]['url']

説明が詳細になれば、貴方かエンドユーザーが望む結果をより得やすくなります。よりプロンプティングなインスピレーションのために DALL·E プレビュー app でサンプルを調べることができます。ここに簡単なサンプルがあります :

(プロンプト) a white siamese cat

(プロンプト) a close up, studio photographic portrait of a white siamese cat that looks curious, backlit ears

各画像は response_format パラメータを使用して URL か Base64 データとして返すことができます。URL は 1 時間後に期限切れになりっます。

 

編集

画像編集エンドポイントはマスクをアップロードすることで編集と拡張を可能にします。マスクの透過な領域は画像が編集されるべき場所を示しますが、プロンプトは 消去された領域だけでなく、新しい画像全体を説明する必要があります。このエンドポイントは DALL·E プレビュー app のエディターのような体験を有効にすることができます。

response = openai.Image.create_edit(
  image=open("sunlit_lounge.png", "rb"),
  mask=open("mask.png", "rb"),
  prompt="A sunlit indoor lounge area with a pool containing a flamingo",
  n=1,
  size="1024x1024"
)
image_url = response['data'][0]['url']

(プロンプト): a sunlit indoor lounge area with a pool containing a flamingo

(画像)

(マスク)

(出力)

アップロードされる画像とマスクは両方とも 4MB 未満のサイズの正方形の PNG 画像である必要があり、また互いに同じ寸法でなければなりません。マスクの透明ではない領域は出力を生成するときに使用されませんので、それらは上のサンプルのように元の画像と必ずしも一致している必要はありません。

 

バリエーション

画像バリエーション・エンドポイントは与えられた画像のバリエーションを生成することを可能にします。

response = openai.Image.create_variation(
  image=open("corgi_and_cat_paw.png", "rb"),
  n=1,
  size="1024x1024"
)
image_url = response['data'][0]['url']

(画像)

(出力)

編集エンドポイントと同様に、入力画像は 4MB 未満のサイズの正方形の PNG 画像でなければなりません。

 

コンテンツ・モデレーション

プロンプトと画像は コンテンツ・ポリシー に基づいてフィルタリングされ、プロンプトか画像がフラグ立てされる場合にはエラーを返します。If you have any feedback on false positives or related issues, please contact us through our help center.

 

言語固有のヒント

インメモリの画像データの使用

上記のガイドの Python サンプルは open 関数を使用して画像データをディスクから読み込んでいます。ある場合には、代わりに画像データをメモリ内に持っているかもしれません。ここに BytesIO オブジェクトにストアされている画像データを使用するサンプル API 呼び出しがあります :

from io import BytesIO

# This is the BytesIO object that contains your image data
byte_stream: BytesIO = [your image data]
byte_array = byte_stream.getvalue()
response = openai.Image.create_variation(
  image=byte_array,
  n=1,
  size="1024x1024"
)

 

画像データの操作

画像を API に渡す前に操作を実行することは役立つ場合があります。ここに画像をリサイズするために PIL を使用したサンプルがあります :

from io import BytesIO
from PIL import Image

# Read the image file from disk and resize it
image = Image.open("image.png")
width, height = 256, 256
image = image.resize((width, height))

# Convert the image to a BytesIO object
byte_stream = BytesIO()
image.save(byte_stream, format='PNG')
byte_array = byte_stream.getvalue()

response = openai.Image.create_variation(
  image=byte_array,
  n=1,
  size="1024x1024"
)

 

エラー処理

API リクエストは不正な入力、レート制限、またはその他の問題によりエラーを返す可能性が潜在的にあります。これらのエラーは try…except ステートメントで処理することができて、エラーの詳細は e.error で見つけられます :

try:
  openai.Image.create_variation(
    open("image.png", "rb"),
    n=1,
    size="1024x1024"
  )
  print(response['data'][0]['url'])
except openai.error.OpenAIError as e:
  print(e.http_status)
  print(e.error)

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2023年7月
月 火 水 木 金 土 日
 12
3456789
10111213141516
17181920212223
24252627282930
31  
« 6月   8月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme