Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlow : Guide : Accelerators : GPU を利用する

Posted on 04/21/2018 by Sales Information

TensorFlow : Guide : Accelerators : GPU を利用する (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
更新日時 : 07/14/2018
作成日時 : 04/21/2018

* TensorFlow 1.9 でドキュメント構成が変わりましたので調整しました。
* GPU の利用方法については、以前は Tutorials に含まれていましたが、内容が改定されて Programmer’s Guide に移されましたので再翻訳致しました。
* 本ページは、TensorFlow 本家サイトの Guide – Accelerators – Using GPUs を翻訳した上で
適宜、補足説明したものです:

  • https://www.tensorflow.org/guide/using_gpu

* サンプルコードの動作確認はしておりますが、適宜、追加改変している場合もあります。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

★ 無料セミナー開催中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

サポートされるデバイス

典型的なシステムでは、複数の計算デバイスがあります。TensorFlow では、サポートされるデバイスのタイプは CPU と GPU です。これらは文字列として表されます。例えば :

“/cpu:0”: 貴方のマシンの CPU。
“/gpu:0”: 貴方のマシンの GPU、もし一つあれば。
“/gpu:1”: 貴方のマシンの2つ目の GPU、etc.

もし TensorFlow 演算が CPU と GPU 両方の実装を持つならば、演算がデバイスに割り当てられる時 GPU デバイスに優先順位が与えられます。例えば、matmul は CPU と GPU kernel を持ちます。cpu:0 と gpu:0 を持つシステム上、matmul を実行するために gpu:0 が選択されます。

 

デバイス割り当てをロギングする

どのデバイスが演算とテンソルに割り当てられたかを見つけ出すためには、セッションを log_device_placement 構成オプションを True にして作成します。

# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

次のような出力が見れるはずです :

Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/device:GPU:0
a: /job:localhost/replica:0/task:0/device:GPU:0
MatMul: /job:localhost/replica:0/task:0/device:GPU:0
[[ 22.  28.]
 [ 49.  64.]]

 

手動のデバイス割り当て

もし貴方が特定の演算を自動的に選択されたものの代わりに貴方の選択したデバイス上で実行させたいのであれば、コンテキスト内で全ての演算が同じデバイス割り当てを持つようなデバイスコンテキストを作成するために tf.device が使用できます。

# Creates a graph.
with tf.device('/cpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

今 a と b が cpu:0 に割り当てられたことが見れるでしょう。MatMul 演算についてはデバイスが明示的に指定されていませんので、TensorFlow ランタイムはその演算と利用可能なデバイス (この例では gpu:0) をベースに一つを選択して必要であればデバイス間で自動的に tensor をコピーするでしょう。

Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
MatMul: /job:localhost/replica:0/task:0/device:GPU:0
[[ 22.  28.]
 [ 49.  64.]]

 

GPU メモリの増大を可能にする

デフォルトでは、(CUDA_VISIBLE_DEVICES 下の) 総ての可視の GPU の GPU メモリの殆ど総てをプロセスにマップします。これは メモリ断片化 を削減してデバイスの比較的貴重な GPU メモリ・リソースをより効率的に使用するために遂行されます。

ある場合にはプロセスにとって利用可能なメモリのサブセットを割り当てるだけ、またはプロセスにより必要とされるに従いメモリ消費量を増大するだけが望ましいです。TensorFlow はこれを制御するために Session 上の2つの Config オプションを提供します。

最初は allow_growth オプションで、これはランタイム割り当てをベースにした GPU メモリだけを割り当てることを試みます : それは非常に少ないメモリを割り当てることから初めて、Session が実行されてより多くの GPU メモリが必要になるとき、TensorFlow プロセスにより必要とされる GPU メモリ領域を拡張します。メモリを解放しないことに注意してください、何故ならばそれは更に悪いメモリ断片化にさえ繋がるからです。このオプションを有効にするには、次によって ConfigProto のオプションを設定します :

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)

2番目の方法は per_process_gpu_memory_fraction で、これは各可視の GPU が割り当てられるべきメモリの全体的な総量の分数を決定します。例えば、次によって TensorFlow に合計メモリの 40 % だけを割り当てることを伝えることができます :

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)

TensorFlow プロセスで利用可能な GPU メモリの総量を真に縛ることを望む場合にこれは有用です。

 

マルチ-GPU システムで単一の GPU を使う

システムに1つ以上の GPU を持つならば、最小の ID を持つ GPU がデフォルトで選択されるでしょう。異なる GPU 上で実行したいのであれば、明示的に好みの選択を指定する必要があります :

# Creates a graph.
with tf.device('/device:GPU:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

もし貴方が指定したデバイスが存在しないのであれば、InvalidArgumentError を得るでしょう :

InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b':
Could not satisfy explicit device specification '/device:GPU:2'
   [[Node: b = Const[dtype=DT_FLOAT, value=Tensor, _device="/device:GPU:2"]()]]

もし貴方が TensorFlow に指定した一つが存在しない場合に演算を実行させるために存在しサポートされているデバイスを自動的に選択させたいのであれば、セッションを作成時の構成オプションにおいて allow_soft_placement を True に設定することができます。

# Creates a graph.
with tf.device('/device:GPU:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
# Creates a session with allow_soft_placement and log_device_placement set
# to True.
sess = tf.Session(config=tf.ConfigProto(
      allow_soft_placement=True, log_device_placement=True))
# Runs the op.
print(sess.run(c))

 

複数の GPU を使用する

もし貴方が TensorFlow を複数の GPU 上で実行したいのであれば、各タワーが異なる GPU に割り当てられる、マルチ・タワー流儀でモデルを構築することができます。例えば :

# Creates a graph.
c = []
for d in ['/device:GPU:2', '/device:GPU:3']:
  with tf.device(d):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
    c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
  sum = tf.add_n(c)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(sum))

貴方は次のような出力を見るでしょう。

Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K20m, pci bus
id: 0000:02:00.0
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: Tesla K20m, pci bus
id: 0000:03:00.0
/job:localhost/replica:0/task:0/device:GPU:2 -> device: 2, name: Tesla K20m, pci bus
id: 0000:83:00.0
/job:localhost/replica:0/task:0/device:GPU:3 -> device: 3, name: Tesla K20m, pci bus
id: 0000:84:00.0
Const_3: /job:localhost/replica:0/task:0/device:GPU:3
Const_2: /job:localhost/replica:0/task:0/device:GPU:3
MatMul_1: /job:localhost/replica:0/task:0/device:GPU:3
Const_1: /job:localhost/replica:0/task:0/device:GPU:2
Const: /job:localhost/replica:0/task:0/device:GPU:2
MatMul: /job:localhost/replica:0/task:0/device:GPU:2
AddN: /job:localhost/replica:0/task:0/cpu:0
[[  44.   56.]
 [  98.  128.]]

cifar 10 チュートリアル は複数の GPU でどのように訓練するかを示す良い例です。

 
以上


クラスキャット

最近の投稿

  • LangGraph 0.5 on Colab : Get started : human-in-the-loop 制御の追加
  • LangGraph 0.5 on Colab : Get started : Tavily Web 検索ツールの追加
  • LangGraph 0.5 on Colab : Get started : カスタム・ワークフローの構築
  • LangGraph 0.5 on Colab : Get started : クイックスタート
  • LangGraph on Colab : SQL エージェントの構築

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2018年4月
月 火 水 木 金 土 日
 1
2345678
9101112131415
16171819202122
23242526272829
30  
« 3月   5月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme