Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlow : Edward API : モデル

Posted on 11/28/2018 by Sales Information

TensorFlow : Edward API : モデル (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 11/28/2018

* 本ページは、Edward サイトの API : API and Documentation – Model を翻訳した上で適宜、補足説明したものです:

  • http://edwardlib.org/api/model


* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

Edward API : モデル

確率モデルはデータ \(\mathbf{x}\) と潜在変数 \(\mathbf{z}\) の同時分布 \(p(\mathbf{x},\mathbf{z})\) です。背景については、確率モデル・チュートリアル を見てください。

Edward では、確率変数の単一の言語を使用してモデルを指定します。確率変数 \(\mathbf{x}\) は tensor \(\theta^*\) によりパラメータ化されたオブジェクトで、そこでは一つのオブジェクト内の確率変数の数はそのパラメータの次元により決定されます。

from edward.models import Normal, Exponential

# 単変量正規分布
Normal(loc=tf.constant(0.0), scale=tf.constant(1.0))
# 5 単変量正規分布のベクトル
Normal(loc=tf.zeros(5), scale=tf.ones(5))
# Exponential の 2  x 3 行列
Exponential(rate=tf.ones([2, 3]))

多変量分布については、多変量次元はパラメータの最も内側の (右端の) 次元です。

from edward.models import Dirichlet, MultivariateNormalTriL

# K-次元ディリクレ分布
Dirichlet(concentration=tf.constant([0.1] * K))
#  lower triangular cov を持つ 5 K-次元多変量正規分布のベクトル
MultivariateNormalTriL(loc=tf.zeros([5, K]), scale_tril=tf.ones([5, K, K]))
# K-次元多変量正規分布の 2 x  5 行列
MultivariateNormalTriL(loc=tf.zeros([2, 5, K]), scale_tril=tf.ones([2, 5, K, K]))

確率変数は log_prob(), \(\log p(\mathbf{x}\mid\theta^*)\), mean(), \(\mathbb{E}_{p(\mathbf{x}\mid\theta^*)}[\mathbf{x}]\) そして sample(), \(\mathbf{x}^*\sim p(\mathbf{x}\mid\theta^*)\) のようなメソッドを備えます。更に、各確率変数は計算グラフの tensor \(\mathbf{x}^*\) と関連付けられます、これは単一のサンプル \(\mathbf{x}^*\sim p(\mathbf{x}\mid\theta^*)\) を表します。

これは、深層ニューラルネットワーク、数学演算の多様なセット、そして (TensorFlow 上で構築された) サードパーティのライブラリとの互換性によるような、複雑な決定論的構造を伴う確率変数をパラメータ化することを容易にします。このデザインはまた確率変数の合成に複雑な確率的構造を捕捉することも可能にします。それらは \(\mathbf{x}^*\) 上で作用します。

from edward.models import Normal

x = Normal(loc=tf.zeros(10), scale=tf.ones(10))
y = tf.constant(5.0)
x + y, x - y, x * y, x / y
tf.tanh(x * y)
x[2]  # 3rd normal rv in the vector

compositionality page では、確率変数を組み立てることによりモデルをどのように構築するかを記述します。

 

以上






クラスキャット

最近の投稿

  • LangGraph 0.5 on Colab : Get started : Tavily Web 検索ツールの追加
  • LangGraph 0.5 on Colab : Get started : カスタム・ワークフローの構築
  • LangGraph 0.5 on Colab : Get started : クイックスタート
  • LangGraph on Colab : SQL エージェントの構築
  • LangGraph on Colab : マルチエージェント・スーパーバイザー

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2018年11月
月 火 水 木 金 土 日
 1234
567891011
12131415161718
19202122232425
2627282930  
« 10月   12月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme