Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlow : TensorLayer : チュートリアル (4) Word2Vec

Posted on 12/05/2018 by Sales Information

TensorFlow : TensorLayer : チュートリアル (4) Word2Vec (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 12/05/2018

* 本ページは、TensorLayer の以下のドキュメントの一部を翻訳した上で適宜、補足説明したものです:

  • tensorlayer.readthedocs.io/en/stable/user/tutorials.html

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

チュートリアル (4)

Word2Vec サンプルを実行する

チュートリアルのこのパートでは、単語群のための行列を訓練します、そこでは各単語は行列の一意の行ベクトルにより表すことができます。最後には、類似の単語は類似のベクトルを持つでしょう。それから単語群を 2-次元平面にプロット出力するとき、類似の単語は互いに近くに群がることになります。

python tutorial_word2vec_basic.py

総てが正しくセットアップされれば、最後に出力を得るでしょう。

 

単語埋め込みを理解する

単語埋め込み

何故ベクトル表現を使用することを望むのか、そしてベクトルをどのように計算するかを理解するために Colah のブログ Word Representations を読むことを強く勧めます。word2vec についてのより詳細は Word2vec Parameter Learning Explained で見つけられます。

基本的には、埋め込み行列の訓練は教師なし学習です。総ての単語が一意の ID で表わされるとき、それは埋め込み行列の行インデックスで、単語はベクトルに変換できて、それは意味をより良く表わすことができます。例えば、一定の male-female 差分ベクトルがあるようです: woman − man = queen – king, これはベクトルの 1 次元が性別を表わすことを意味します。

モデルは次のように作成できます。

# train_inputs is a row vector, a input is an integer id of single word.
# train_labels is a column vector, a label is an integer id of single word.
# valid_dataset is a column vector, a valid set is an integer id of single word.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

# Look up embeddings for inputs.
emb_net = tl.layers.Word2vecEmbeddingInputlayer(
        inputs = train_inputs,
        train_labels = train_labels,
        vocabulary_size = vocabulary_size,
        embedding_size = embedding_size,
        num_sampled = num_sampled,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(
                          stddev=float(1.0/np.sqrt(embedding_size))),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    )

 

データセット反復と損失

Word2vec は訓練のためにネガティブ・サンプリングと Skip-Gram モデルを使用します。Noise-Contrastive Estimation (NCE) 損失は損失の計算を減じるのを助けることができます。Skip-Gram はコンテキストとターゲットを反対にして、そのターゲット単語から各コンテキスト単語を予測することを試みます。次のように訓練データを生成するために tl.nlp.generate_skip_gram_batch を使用します、tutorial_generate_text.py を見てください。

# NCE cost expression is provided by Word2vecEmbeddingInputlayer
cost = emb_net.nce_cost
train_params = emb_net.all_params

train_op = tf.train.AdagradOptimizer(learning_rate, initial_accumulator_value=0.1,
          use_locking=False).minimize(cost, var_list=train_params)

data_index = 0
while (step < num_steps):
  batch_inputs, batch_labels, data_index = tl.nlp.generate_skip_gram_batch(
                data=data, batch_size=batch_size, num_skips=num_skips,
                skip_window=skip_window, data_index=data_index)
  feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
  _, loss_val = sess.run([train_op, cost], feed_dict=feed_dict)

 

既存の埋め込み行列を restore する

埋め込み行列を訓練する最後に、行列と対応する辞書をセーブします。それから次回、行列と辞書を次のように restore できます。(tutorial_generate_text.py の main_restore_embedding_layer 参照)

vocabulary_size = 50000
embedding_size = 128
model_file_name = "model_word2vec_50k_128"
batch_size = None

print("Load existing embedding matrix and dictionaries")
all_var = tl.files.load_npy_to_any(name=model_file_name+'.npy')
data = all_var['data']; count = all_var['count']
dictionary = all_var['dictionary']
reverse_dictionary = all_var['reverse_dictionary']

tl.nlp.save_vocab(count, name='vocab_'+model_file_name+'.txt')

del all_var, data, count

load_params = tl.files.load_npz(name=model_file_name+'.npz')

x = tf.placeholder(tf.int32, shape=[batch_size])
y_ = tf.placeholder(tf.int32, shape=[batch_size, 1])

emb_net = tl.layers.EmbeddingInputlayer(
                inputs = x,
                vocabulary_size = vocabulary_size,
                embedding_size = embedding_size,
                name ='embedding_layer')

tl.layers.initialize_global_variables(sess)

tl.files.assign_params(sess, [load_params[0]], emb_net)
 

以上






クラスキャット

最近の投稿

  • LangGraph on Colab : エージェント型 RAG
  • LangGraph : 例題 : エージェント型 RAG
  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (22) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2018年12月
月 火 水 木 金 土 日
 12
3456789
10111213141516
17181920212223
24252627282930
31  
« 11月   1月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme