Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

リアルタイム物体検出ソリューション「ClassCat® ObjDetector v3.0」を 2019年6月から提供開始

Posted on 05/27/2019 by Sales Information
Press Release

cc_logo_square

2019年05月27日 
株式会社クラスキャット 
高速・高精度な AI アルゴリズムをサポートするリアルタイム物体検出ソリューション
「ClassCat® ObjDetector v3.0」を 2019年6月から提供開始
 
– TensorFlow 新実行モードに対応 / 『YOLO 3』『網膜ネット』をサポート –

 

お問合せについて

クラスキャット AI リサーチ (株式会社クラスキャット、代表取締役社長:佐々木規行、茨城県取手市)は、米 Google 社によりオープンソース化された人工知能フレームワーク TensorFlow 上に構築された、高速・高精度なリアルタイム物体検出ソリューション「ClassCat® ObjDetector v3.0」を 2019年6月から提供開始することを発表致しました。
物体検出は活発に研究されている人工知能分野の一つで、画像や動画上の複数種類の物体の位置を特定してクラス分類することを可能にする応用範囲が広い技術です。

本製品「ClassCat® ObjDetector v3.0」の主な特徴は次のようなものです :

  1. TensorFlow 新実行モード (Eager execution) に対応
  2. 高速・高精度な人工知能アルゴリズムを新たにサポート
  3. 動画のリアルタイム物体検出
  4. データ入力パイプライン API 仕様の統一

人工知能フレームワークのデファクトスタンダードである TensorFlow の優位点の一つは静的計算グラフによる実行モード (グラフモード) の高パフォーマンスですが、TensorFlow 最新バージョンでは高パフォーマンスを維持しつつより柔軟な構築が可能となる新しい実行モード (Eager execution) への移行が必須とされています。「ClassCat® ObjDetector v3.0」はこの TensorFlow の新実行モード Eager execution に対応しています。

「ClassCat® ObjDetector v3.0」は高速・高精度な人工知能アルゴリズムを新たにサポート致しました。『YOLO 3』及び『網膜ネット』と呼称されるこれらのアルゴリズムはそれぞれ高いパフォーマンスと実用性が十分に評価されている最先端技術の物体検出アルゴリズムの一つです。特に『YOLO 3』のサポートにより動画におけるリアルタイム物体検出も可能となっています。

「ClassCat® ObjDetector v3.0」はまたデータ入力パイプライン API 仕様を統一致しました。これは本製品で提供される複数の物体検出アルゴリズムの共通仕様です。このためユーザ企業はこの仕様に適合するアノテーション (画像データを注釈するメタデータ) ファイルを画像データとともに準備すれば手軽に低コストで物体検出ソリューション技術を利用することができます。

「ClassCat® ObjDetector v3.0」の動作環境はマルチクラウド対応です。GPU を装備するインスタンスやベアメタルが利用可能な各種パブリッククラウド Amazon EC2、Microsoft Azure、IBM Cloud、Google Cloud Platform 上で提供されます。

 


【販売概要】

製品名  : ClassCat® ObjDetector v3.0
販売時期 : 2019年6月
販売形態 : 直接販売・販売パートナー経由・OEM
販売価格 : オープンプライス

【動作環境】

製品名  : ClassCat® ObjDetector v3.0
OS    : Ubuntu Server 16.04 LTS
ハードウェア : 各種パブリッククラウドの仮想サーバ、ベアメタルサーバ。
GPU 装備必須。

 


◆ お問合せ
本件に関するお問い合わせ先は下記までお願いいたします。

クラスキャット AI リサーチ
〒300-1525 茨城県取手市桜ヶ丘 4-48-7
セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com
WebSite: http://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/
Twitter: https://twitter.com/ClassCat_AI_Lab

※ ClassCat は株式会社クラスキャットの登録商標です。
※ その他、記載されている会社名・製品名は各社の登録商標または商標です。
クラスキャット

最近の投稿

  • LangGraph 0.5 : エージェント開発 : ワークフローとエージェント
  • LangGraph 0.5 : エージェント開発 : エージェントの実行
  • LangGraph 0.5 : エージェント開発 : prebuilt コンポーネントを使用したエージェント開発
  • LangGraph 0.5 : Get started : ローカルサーバの実行
  • LangGraph 0.5 on Colab : Get started : human-in-the-loop 制御の追加

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) LangGraph 0.5 (8) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2019年5月
月 火 水 木 金 土 日
 12345
6789101112
13141516171819
20212223242526
2728293031  
« 4月   6月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme