Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlow 2.0 Beta : ガイド : TensorFlow 2.0 の tf.function と AutoGraph

Posted on 06/09/2019 by Sales Information

TensorFlow 2.0 Beta : ガイド : TensorFlow 2.0 の tf.function と AutoGraph (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/09/2019

* 本ページは、TensorFlow の本家サイトの TF 2.0 Beta の以下のページを翻訳した上で適宜、補足説明したものです:

  • tf.function and AutoGraph in TensorFlow 2.0

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

ガイド : TensorFlow 2.0 の tf.function と AutoGraph

TF 2.0 は eager execution の容易さと TF 1.0 のパワーを一つにまとめています。この融合の中心には tf.function があります、これは Python シンタクスのサブセットを可搬な、高パフォーマンスの TensorFlow グラフに変換することを可能にします。

tf.function のクールな新しい特徴は AutoGraph です、これは貴方に自然な Python シンタクスを使用してグラフコードを書かせます。AutoGraph で使用できる Python 特徴のリストについては、AutoGraph Capabilities and Limitations を見てください。tf.function についてのより多くの詳細は、RFC TF 2.0: Functions, not Sessions を見てください。AutoGraph についてのより詳細は、tf.autograph を見てください。

このチュートリアルは tf.function と AutoGraph の基本的な特徴を貴方にウォークスルーしてもらいます。

 

セットアップ

TensorFlow 2.0 Preview Nightly をインポートして TF 2.0 モードを有効にします :

from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
!pip install -q tensorflow==2.0.0-beta0
import tensorflow as tf

 

tf.function デコレータ

関数を tf.function でアノテートするとき、依然として任意の他の関数のようにそれを呼び出すことができます。しかしそれはグラフ内にコンパイルされ、これは高速な実行の恩恵を得ることを意味し、GPU か TPU で実行されるか、SavedModel にエクスポートされます。

@tf.function
def simple_nn_layer(x, y):
  return tf.nn.relu(tf.matmul(x, y))


x = tf.random.uniform((3, 3))
y = tf.random.uniform((3, 3))

simple_nn_layer(x, y)
<tf.Tensor: id=23, shape=(3, 3), dtype=float32, numpy=
array([[0.28093395, 0.38601664, 0.1492369 ],
       [0.18872553, 0.49841696, 0.21768065],
       [0.5309121 , 0.94758576, 0.38262835]], dtype=float32)>

アノテーションの結果を調べればそれが TensorFlow ランタイムとの総ての相互作用を扱う特別な callable であることが見て取れるでしょう。

simple_nn_layer
<tensorflow.python.eager.def_function.Function at 0x7efc950bfef0>

貴方のコードが複数の関数を使用する場合、それら総てをアノテートする必要はありません – アノテートされた関数から呼び出された任意の関数もまたグラフモードで動作します。

def linear_layer(x):
  return 2 * x + 1


@tf.function
def deep_net(x):
  return tf.nn.relu(linear_layer(x))


deep_net(tf.constant((1, 2, 3)))
<tf.Tensor: id=36, shape=(3,), dtype=int32, numpy=array([3, 5, 7], dtype=int32)>

多くの小さい ops を持つグラフに対しては、Functions は eager コードよりも高速であり得ます。しかし少数の高価な ops を持つグラフに対しては、多量のスピードアップを見ないかもしれません。

import timeit
conv_layer = tf.keras.layers.Conv2D(100, 3)

@tf.function
def conv_fn(image):
  return conv_layer(image)

image = tf.zeros([1, 200, 200, 100])
# warm up
conv_layer(image); conv_fn(image)
print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10))
print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10))
print("Note how there's not much difference in performance for convolutions")
Eager conv: 0.2274835030000304
Function conv: 0.1842926219999299
Note how there's not much difference in performance for convolutions
lstm_cell = tf.keras.layers.LSTMCell(10)

@tf.function
def lstm_fn(input, state):
  return lstm_cell(input, state)

input = tf.zeros([10, 10])
state = [tf.zeros([10, 10])] * 2
# warm up
lstm_cell(input, state); lstm_fn(input, state)
print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10))
print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10))
eager lstm: 0.005612198999983775
function lstm: 0.004945082999938677

 

Python 制御フローを使用する

tf.function 内でデータ依存制御フローを使用しているとき、Python 制御フロー・ステートメントを使用することができてそして AutoGraph はそれらを適切な TensorFlow ops に変換します。例えば、if ステートメントはそれらが Tensor に依存する場合 tf.cond() に変換されるでしょう。

下の例では、x は Tensor ですがステートメントは期待通りに動作します :

@tf.function
def square_if_positive(x):
  if x > 0:
    x = x * x
  else:
    x = 0
  return x


print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2))))
print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2))))
square_if_positive(2) = 4
square_if_positive(-2) = 0

 
Note: 前の例はスカラー値を伴う単純な条件節を使用しています。現実世界のコードでは典型的にはバッチ処理が使用されます。

AutoGraph は while, for, if, break, continue と return のような一般的な Python ステートメントをネスティングのためのサポートとともに、サポートします。それは while と if ステートメントの条件で Tensor 式を使用したり、for ループで Tensor に渡り iterate できることを意味します。

@tf.function
def sum_even(items):
  s = 0
  for c in items:
    if c % 2 > 0:
      continue
    s += c
  return s


sum_even(tf.constant([10, 12, 15, 20]))
<tf.Tensor: id=606, shape=(), dtype=int32, numpy=42>

AutoGraph はまた上級ユーザのために低位 API も提供します。例えば生成されたコードを見るためにそれを使用できます。

print(tf.autograph.to_code(sum_even.python_function))
def tf__sum_even(items):
  do_return = False
  retval_ = ag__.UndefinedReturnValue()
  s = 0

  def loop_body(loop_vars, s_2):
    c = loop_vars
    continue_ = False
    cond = c % 2 > 0

    def get_state():
      return ()

    def set_state(_):
      pass

    def if_true():
      continue_ = True
      return continue_

    def if_false():
      return continue_
    continue_ = ag__.if_stmt(cond, if_true, if_false, get_state, set_state)
    cond_1 = ag__.not_(continue_)

    def get_state_1():
      return ()

    def set_state_1(_):
      pass

    def if_true_1():
      s_1, = s_2,
      s_1 += c
      return s_1

    def if_false_1():
      return s_2
    s_2 = ag__.if_stmt(cond_1, if_true_1, if_false_1, get_state_1, set_state_1)
    return s_2,
  s, = ag__.for_stmt(items, None, loop_body, (s,))
  do_return = True
  retval_ = s
  cond_2 = ag__.is_undefined_return(retval_)

  def get_state_2():
    return ()

  def set_state_2(_):
    pass

  def if_true_2():
    retval_ = None
    return retval_

  def if_false_2():
    return retval_
  retval_ = ag__.if_stmt(cond_2, if_true_2, if_false_2, get_state_2, set_state_2)
  return retval_

ここにより複雑な制御フローのサンプルがあります :

@tf.function
def fizzbuzz(n):
  msg = tf.constant('')
  for i in tf.range(n):
    if tf.equal(i % 3, 0):
      tf.print('Fizz')
    elif tf.equal(i % 5, 0):
      tf.print('Buzz')
    else:
      tf.print(i)

fizzbuzz(tf.constant(15))
Fizz
1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11
Fizz
13
14

 

Keras と AutoGraph

tf.function はオブジェクトのメソッドでもまた使用できます。例えば、典型的にはモデルの call 関数をアノテートすることで貴方のカスタム Keras モデルをデコレートできます。より多くの情報については、tf.keras を見てください。

class CustomModel(tf.keras.models.Model):

  @tf.function
  def call(self, input_data):
    if tf.reduce_mean(input_data) > 0:
      return input_data
    else:
      return input_data // 2


model = CustomModel()

model(tf.constant([-2, -4]))
<tf.Tensor: id=723, shape=(2,), dtype=int32, numpy=array([-1, -2], dtype=int32)>

 

副作用

ちょうど eager モードでのように、通常は tf.function 内で tf.assign や tf.print のような、副作用を持つ演算を使用することができて、それはそれらが順番に実行されることを確実にするために必要な制御依存性を挿入します。

v = tf.Variable(5)

@tf.function
def find_next_odd():
  v.assign(v + 1)
  if tf.equal(v % 2, 0):
    v.assign(v + 1)


find_next_odd()
v
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=7>

 

例題: 単純なモデルを訓練する

AutoGraph はまたより多くの計算を TensorFlow 内に移すことを可能にします。例えば、訓練ループはちょうど制御フローですので、それは実際には TensorFlow に持ち込むことができます。

 

データをダウンロードする

def prepare_mnist_features_and_labels(x, y):
  x = tf.cast(x, tf.float32) / 255.0
  y = tf.cast(y, tf.int64)
  return x, y

def mnist_dataset():
  (x, y), _ = tf.keras.datasets.mnist.load_data()
  ds = tf.data.Dataset.from_tensor_slices((x, y))
  ds = ds.map(prepare_mnist_features_and_labels)
  ds = ds.take(20000).shuffle(20000).batch(100)
  return ds

train_dataset = mnist_dataset()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step

 

モデルを定義する

model = tf.keras.Sequential((
    tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)),
    tf.keras.layers.Dense(100, activation='relu'),
    tf.keras.layers.Dense(100, activation='relu'),
    tf.keras.layers.Dense(10)))
model.build()
optimizer = tf.keras.optimizers.Adam()

 

訓練ループを定義する

compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()


def train_one_step(model, optimizer, x, y):
  with tf.GradientTape() as tape:
    logits = model(x)
    loss = compute_loss(y, logits)

  grads = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(grads, model.trainable_variables))

  compute_accuracy(y, logits)
  return loss


@tf.function
def train(model, optimizer):
  train_ds = mnist_dataset()
  step = 0
  loss = 0.0
  accuracy = 0.0
  for x, y in train_ds:
    step += 1
    loss = train_one_step(model, optimizer, x, y)
    if tf.equal(step % 10, 0):
      tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result())
  return step, loss, accuracy

step, loss, accuracy = train(model, optimizer)
print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result())
Step 10 : loss 1.83085191 ; accuracy 0.336
Step 20 : loss 1.03369474 ; accuracy 0.532
Step 30 : loss 0.636070907 ; accuracy 0.627
Step 40 : loss 0.49779284 ; accuracy 0.6745
Step 50 : loss 0.485161096 ; accuracy 0.7116
Step 60 : loss 0.574727654 ; accuracy 0.7365
Step 70 : loss 0.307435066 ; accuracy 0.756714284
Step 80 : loss 0.495543599 ; accuracy 0.7725
Step 90 : loss 0.34826988 ; accuracy 0.785
Step 100 : loss 0.334337503 ; accuracy 0.7955
Step 110 : loss 0.290210605 ; accuracy 0.805090904
Step 120 : loss 0.320541888 ; accuracy 0.813166678
Step 130 : loss 0.307672709 ; accuracy 0.821230769
Step 140 : loss 0.235306799 ; accuracy 0.826928556
Step 150 : loss 0.252060503 ; accuracy 0.833266675
Step 160 : loss 0.177218169 ; accuracy 0.8395
Step 170 : loss 0.292944938 ; accuracy 0.844470561
Step 180 : loss 0.249169499 ; accuracy 0.848555565
Step 190 : loss 0.43364051 ; accuracy 0.852210522
Step 200 : loss 0.25526756 ; accuracy 0.85565
Final step tf.Tensor(200, shape=(), dtype=int32) : loss tf.Tensor(0.25526756, shape=(), dtype=float32) ; accuracy tf.Tensor(0.85565, shape=(), dtype=float32)

 

バッチ処理

実際のアプリケーションではバッチ処理はパフォーマンスのために重要です。AutoGraph に変換する最善のコードはそこでは制御フローがバッチレベルで決定されるようなコードです。個々のサンプルレベルで決定を行なう場合には、パフォーマンスを維持するために batch API を利用してみてください。

例えば、Python で次のようなコードを持つ場合 :

def square_if_positive(x):
  return [i ** 2 if i > 0 else i for i in x]


square_if_positive(range(-5, 5))
[-5, -4, -3, -2, -1, 0, 1, 4, 9, 16]

TensorFlow で次のようにそれを書く誘惑にかられるかもしれません (そしてこれは動作します!) :

@tf.function
def square_if_positive_naive(x):
  result = tf.TensorArray(tf.int32, size=x.shape[0])
  for i in tf.range(x.shape[0]):
    if x[i] > 0:
      result = result.write(i, x[i] ** 2)
    else:
      result = result.write(i, x[i])
  return result.stack()


square_if_positive_naive(tf.range(-5, 5))
<tf.Tensor: id=1834, shape=(10,), dtype=int32, numpy=array([-5, -4, -3, -2, -1,  0,  1,  4,  9, 16], dtype=int32)>

しかしこの場合、次を書くことができることが判明します :

def square_if_positive_vectorized(x):
  return tf.where(x > 0, x ** 2, x)


square_if_positive_vectorized(tf.range(-5, 5))
<tf.Tensor: id=1844, shape=(10,), dtype=int32, numpy=array([-5, -4, -3, -2, -1,  0,  1,  4,  9, 16], dtype=int32)>
 

以上



クラスキャット

最近の投稿

  • LangGraph on Colab : エージェント型 RAG
  • LangGraph : 例題 : エージェント型 RAG
  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (22) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2019年6月
月 火 水 木 金 土 日
 12
3456789
10111213141516
17181920212223
24252627282930
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme