Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlow 2.0 Beta : 上級 Tutorials : 画像生成 :- 深層畳み込み敵対的生成ネットワーク

Posted on 07/08/2019 by Sales Information

TensorFlow 2.0 Beta : 上級 Tutorials : 画像生成 :- 深層畳み込み敵対的生成ネットワーク (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 07/08/2019

* 本ページは、TensorFlow の本家サイトの TF 2.0 Beta – Advanced Tutorials – Image generation の以下のページを翻訳した上で適宜、補足説明したものです:

  • Deep Convolutional Generative Adversarial Network

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

画像生成 :- 深層畳み込み敵対的生成ネットワーク

このチュートリアルは DCGAN (Deep Convolutional Generative Adversarial Network, 深層畳み込み敵対的生成ネットワーク) を使用して手書き数字の画像をどのように生成するかを実演します。コードは tf.GradientTape 訓練ループで Keras Sequential API を使用して書かれています。

 

GAN とは何でしょう?

敵対的生成ネットワーク (GAN, Generative Adversarial Networks) は現在コンピュータ・サイエンスで最も興味深いアイデアの一つです。2 つのモデルが敵対するプロセスにより同時に訓練されます。generator (「芸術家 = the artist」) がリアルに見える画像を作成することを学習し、その一方で discriminator (「芸術評論家 = the art critic」) がフェイクからリアル画像を識別することを学習します。

訓練の間、generator はリアルに見える画像を作成することに次第に上達し、その一方で discriminator はそれらを識別することに上達します。discriminator がもはやリアル画像をフェイクから識別できないとき、プロセスは均衡に達します。

このノートブックは MNIST データセット上でこのプロセスを実演します。次のアニメーションは (generator が) 50 エポックの間訓練されたとき generator により生成された画像のシリーズを示します。画像はランダム・ノイズとして始まり、そして時間とともに手書き数字にだんだん似ていきます。

 

TensorFlow と他のライブラリをインポートする

from __future__ import absolute_import, division, print_function, unicode_literals
!pip install -q tensorflow-gpu==2.0.0-beta1
import tensorflow as tf
tf.__version__
'2.0.0-beta1'
# To generate GIFs
!pip install -q imageio
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time

from IPython import display

 

データセットをロードして準備する

generator と discriminator を訓練するために MNIST データセットを使用していきます。generator は MNIST データに似ている手書き数字を生成します。

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
BUFFER_SIZE = 60000
BATCH_SIZE = 256
# Batch and shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

 

モデルを作成する

generator と discriminator の両者は Keras Sequential API を使用して定義されます。

 

Generator

generator は seed (ランダムノイズ) から画像を生成するために tf.keras.layers.Conv2DTranspose (upsampling) 層を使用します。この seed を入力として取る Dense 層から始めて、それから 28x28x1 の望まれるサイズに達するまで幾度か upsample します。tanh を使用する出力層を除いて、各層のためには tf.keras.layers.LeakyReLU 活性が (使用されることが) 分かるでしょう。

def make_generator_model():
    model = tf.keras.Sequential()
    model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Reshape((7, 7, 256)))
    assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size

    model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
    assert model.output_shape == (None, 7, 7, 128)
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
    assert model.output_shape == (None, 14, 14, 64)
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
    assert model.output_shape == (None, 28, 28, 1)

    return model

画像を作成するために (まだ訓練されていない) generator を使用します。

generator = make_generator_model()

noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')
<matplotlib.image.AxesImage at 0x7f02a7556710>

 

Discriminator

discriminator は CNN-ベースの画像分類器です。

def make_discriminator_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
                                     input_shape=[28, 28, 1]))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Flatten())
    model.add(layers.Dense(1))

    return model

生成された画像をリアルかフェイクとして分類するために (まだ訓練されていない) discriminator を使用します。モデルはリアル画像のためにはポジティブ値を、そしてフェイク画像のためにはネガティブ値を出力するように訓練されます。

discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print (decision)
tf.Tensor([[0.00165603]], shape=(1, 1), dtype=float32)

 

損失と optimizer を定義する

両者のモデルのために損失関数と optimizer を定義します。

# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

 

Discriminator 損失

このメソッドは discriminator がフェイク (画像) からリアル画像をどの程度上手く識別できるかを数値化します。それはリアル画像上の discriminator の予測を 1 の配列と、そしてフェイク (生成された) 画像上の discriminator の予測を 0 の配列と比較します。

def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss

 

Generator 損失

generator 損失はそれがどの程度上手く discriminator を欺くことができたかを数値化します。直感的には、generator が上手く遂行していれば、discriminator はフェイク画像をリアル (or 1) として分類するでしょう。ここでは、生成された画像上の discriminator の決定を 1 の配列と比較します。

def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

discriminator と generator の optimizer は異なります、何故ならば 2 つのネットワークを別々に訓練するからです。

generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

 

チェックポイントをセーブする

このノートブックはモデルをどのようにセーブしてリストアするかも実演します、これは長い実行訓練タスクが中断された場合に有用であり得ます。

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
                                 discriminator_optimizer=discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)

 

訓練ループを定義する

EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16

# We will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])

訓練ループは generator が入力としてランダムシードを受け取ることから開始されます。そのシードは画像を生成するために使用されます。それから discriminator は (訓練セットからドローされた) リアル画像と (generator により生成された) フェイク画像を分類するために使用されます。損失はこれらのモデルの各々のために計算されて、勾配は generator と discriminator を更新するために使用されます。

# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
      generated_images = generator(noise, training=True)

      real_output = discriminator(images, training=True)
      fake_output = discriminator(generated_images, training=True)

      gen_loss = generator_loss(fake_output)
      disc_loss = discriminator_loss(real_output, fake_output)

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
  for epoch in range(epochs):
    start = time.time()

    for image_batch in dataset:
      train_step(image_batch)

    # Produce images for the GIF as we go
    display.clear_output(wait=True)
    generate_and_save_images(generator,
                             epoch + 1,
                             seed)

    # Save the model every 15 epochs
    if (epoch + 1) % 15 == 0:
      checkpoint.save(file_prefix = checkpoint_prefix)

    print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))

  # Generate after the final epoch
  display.clear_output(wait=True)
  generate_and_save_images(generator,
                           epochs,
                           seed)

画像を生成してセーブする

def generate_and_save_images(model, epoch, test_input):
  # Notice `training` is set to False.
  # This is so all layers run in inference mode (batchnorm).
  predictions = model(test_input, training=False)

  fig = plt.figure(figsize=(4,4))

  for i in range(predictions.shape[0]):
      plt.subplot(4, 4, i+1)
      plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
      plt.axis('off')

  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
  plt.show()

 

モデルを訓練する

generator と discriminator を同時に訓練するためには上で定義された train() メソッドを呼び出します。注意してください、GAN の訓練はトリッキーかもしれません。generator と discriminator は互いに圧倒 (= overpower) しないこと (e.g., それらは同様なレートで訓練します) は重要です。

訓練の最初では、生成された画像はランダムノイズのように見えます。訓練が進むにつれて、生成される数字は段々とリアルに見えます。およそ 50 エポック後、それらは MNIST 数字に似ます。Colab のデフォルト設定で約 1 分 / エポックかかるかもしれません。

%%time
train(train_dataset, EPOCHS)

CPU times: user 2min 33s, sys: 31.3 s, total: 3min 5s
Wall time: 3min 48s

最新のチェックポイントをリストアします。

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f01c00eecc0>

 

GIF を作成する

# Display a single image using the epoch number
def display_image(epoch_no):
  return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))
display_image(EPOCHS)

訓練の間にセーブされた画像を使用して animated gif を作成するために imageio を使用します。

anim_file = 'dcgan.gif'

with imageio.get_writer(anim_file, mode='I') as writer:
  filenames = glob.glob('image*.png')
  filenames = sorted(filenames)
  last = -1
  for i,filename in enumerate(filenames):
    frame = 2*(i**0.5)
    if round(frame) > round(last):
      last = frame
    else:
      continue
    image = imageio.imread(filename)
    writer.append_data(image)
  image = imageio.imread(filename)
  writer.append_data(image)

import IPython
if IPython.version_info > (6,2,0,''):
  display.Image(filename=anim_file)

Colab で作業しているのであれば、下のコードでアニメーションをダウンロードできます :

try:
  from google.colab import files
except ImportError:
  pass
else:
  files.download(anim_file)

 

Next steps

このチュートリアルは GAN を書いて訓練するために必要な完全なコードを示しました。次のステップとして、異なるデータセットで実験することを望むかもしれません、例えば、Kaggle で利用可能な Large-scale Celeb Faces Attributes (CelebA) データセットです。GAN についてより多く学習するためには NIPS 2016 Tutorial: Generative Adversarial Networks を勧めます。

 

以上






クラスキャット

最近の投稿

  • LangGraph on Colab : エージェント型 RAG
  • LangGraph : 例題 : エージェント型 RAG
  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (22) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2019年7月
月 火 水 木 金 土 日
1234567
891011121314
15161718192021
22232425262728
293031  
« 6月   8月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme