Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

IBM Q Experience 対応 量子機械学習を可能にする TensorFlow エコシステムの提供を開始

Posted on 11/12/2019 by Sales Information
Press Release

cc_logo_square

2019年11月12日 
株式会社クラスキャット 
クラスキャット、IBM Q Experience 対応
量子機械学習を可能にする TensorFlow エコシステムの提供を開始
 
– GPU と QPU のハイブリッド環境で動作「ClassCat® Hybrid QNN」 –

 

お問合せについて

株式会社クラスキャット (代表取締役社長:佐々木規行、茨城県取手市) は、量子機械学習ツールキット「ClassCat® Hybrid QNN」を本日 (11月12日) から提供開始することを発表致しました。本製品は IBM Q Experience で利用可能な量子プロセッサを始めとする各種量子デバイスやシミュレータ上で量子機械学習を遂行できる製品で、深層学習フレームワーク TensorFlow のエコシステム (拡張キット) として提供されます。GPU アクセラレータと QPU (量子処理ユニット) のハイブリッド環境で高速に量子機械学習を実行できます。

本製品「ClassCat® Hybrid QNN」は各種量子デバイスやシミュレータ上で量子機械学習を遂行できます。リアル量子デバイスについては IBM Q Experience で利用可能な量子プロセッサに対応しています。IBM Q Experience は米 IBM 社が公開している量子クラウドサービスとソフトウェアプラットフォームです。そしてまた以下のポピュラーな量子シミュレータもサポートしています :

  • Qiskit Aer (米 IBM 社)
  • Microsoft Quantum Development Kit
  • Cirq (米 Google 社)

本製品「ClassCat® Hybrid QNN」は TensorFlow のエコシステムです。TensorFlow は米 Google 社がオープンソース化した、深層学習フレームワークのデファクトスタンダードです。高パフォーマンスな人工知能モデルを開発するために世界中で利用されています。最新版 TensorFlow 2.0 では Keras と呼ばれる高位 API と柔軟性の高い Eager execution 動作モードを軸にすることにより、使い易さが更に改良されています。「ClassCat® Hybrid QNN」はこの TensorFlow 2.0 上に構築されていますので、量子機械学習においてその洗練された最適化手法を GPU アクセラレータとともに利用することができます。

本製品「ClassCat® Hybrid QNN」では量子回路を機械学習モデルとして位置付け、量子デバイスに接続して量子計算を実行しながら TensorFlow によりモデルを最適化していきます。GPU アクセラレータと量子処理ユニット QPU のハイブリッド環境で、ユーザが量子コンピューティングの様々な実験や研究を行なうことを可能にします。
なおクラスキャットでは汎用性のあるモデルを順次提供していく予定です。

本製品「ClassCat® Hybrid QNN」はマルチクラウド上のソリューションとして提供されます。GPU を装備するインスタンスやベアメタルが利用可能な各種パブリッククラウド – Amazon EC2、Microsoft Azure、IBM Cloud、Google Cloud Platform が選択可能です。

 


【製品販売概要】

製品名  : ClassCat® Hybrid QNN
販売時期 : 2019年11月12日
販売形態 : 直接販売・販売パートナー経由・OEM
販売価格 : オープンプライス

【動作環境】

製品名  : ClassCat® Hybrid QNN
OS    : Ubuntu Server 18.04 LTS
ハードウェア : 各種パブリッククラウドの仮想サーバ、ベアメタルサーバ。
GPU 装備必須、マルチGPU推奨。

 


◆ お問合せ
本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット
〒300-1525 茨城県取手市桜ヶ丘 4-48-7
セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com
WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

※ ClassCat は株式会社クラスキャットの登録商標です。
※ その他、記載されている会社名・製品名は各社の登録商標または商標です。
クラスキャット

最近の投稿

  • LangGraph 0.5 on Colab : Get started : human-in-the-loop 制御の追加
  • LangGraph 0.5 on Colab : Get started : Tavily Web 検索ツールの追加
  • LangGraph 0.5 on Colab : Get started : カスタム・ワークフローの構築
  • LangGraph 0.5 on Colab : Get started : クイックスタート
  • LangGraph on Colab : SQL エージェントの構築

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2019年11月
月 火 水 木 金 土 日
 123
45678910
11121314151617
18192021222324
252627282930  
« 10月   12月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme