Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TensorFlow 2.0 : 上級 Tutorials : 生成 :- 畳み込み変分オートエンコーダ

Posted on 11/23/201905/25/2021 by Sales Information

TensorFlow 2.0 : 上級 Tutorials : 生成 :- 畳み込み変分オートエンコーダ (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 11/23/2019

* 本ページは、TensorFlow org サイトの TF 2.0 – Advanced Tutorials – Generative の以下のページを翻訳した上で
適宜、補足説明したものです:

  • Convolutional Variational Autoencoder

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

★ 無料セミナー開催中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

生成 :- 畳み込み変分オートエンコーダ

このノートブックは変分オートエンコーダを訓練することにより手書き数字をどのように生成するかを実演します (1, 2)。

# to generate gifs
!pip install -q imageio

 

TensorFlow と他のライブラリをインポートする

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

import os
import time
import numpy as np
import glob
import matplotlib.pyplot as plt
import PIL
import imageio

from IPython import display

 

MNIST データセットをロードする

各 MNIST 画像は元々は 784 整数ベクトルで、その各々は 0-255 の間でピクセル強度を表します。私達のモデルでは各ピクセルを Bernoulli 分布でモデル化して、データセットを統計的に二値化します。

(train_images, _), (test_images, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1).astype('float32')

# Normalizing the images to the range of [0., 1.]
train_images /= 255.
test_images /= 255.

# Binarization
train_images[train_images >= .5] = 1.
train_images[train_images < .5] = 0.
test_images[test_images >= .5] = 1.
test_images[test_images < .5] = 0.
TRAIN_BUF = 60000
BATCH_SIZE = 100

TEST_BUF = 10000

 

バッチを作成してデータセットをシャッフルするために tf.data を使用する

train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(TRAIN_BUF).batch(BATCH_SIZE)
test_dataset = tf.data.Dataset.from_tensor_slices(test_images).shuffle(TEST_BUF).batch(BATCH_SIZE)

 

生成と推論ネットワークを tf.keras.Sequential で配線する (= wire up)

私達の VAE サンプルでは、生成と推論ネットワークのために 2 つの小さな ConvNet を使用します。これらのニューラルネットは小さいので、コードを単純化するために tf.keras.Sequential を使用します。以下の記述において $x$ と $z$ をそれぞれ観測と潜在 (= latent) 変数を示すものとします。

 

生成ネットワーク (= Generative Network)

これは生成モデルを定義します、これは入力として潜在エンコーディングを取り、観測の条件付き分布, i.e. $p(x|z)$ のためのパラメータを出力します。更に、潜在変数のために単位ガウス事前分布 $p(z)$ を使用します。

 

推論ネットワーク

これは近似事後分布 $q(z|x)$ を定義します、これは入力として観測を取り潜在表現の条件付き分布のためのパラメータのセットを出力します。この例では、この分布を単純に対角ガウス分布 (= diagonal Gaussian) としてモデル化します。この場合、推論ネットワークは factorized Gaussian の平均 (= mean) と対数分散 (= log-variance) パラメータを出力します (分散の代わりの対数分散は直接的には数値的安定性のためです)。

 

再パラメータ化 (= Reparameterization) トリック

最適化の間、最初に単位ガウス分布からサンプリングすることにより $q(z|x)$ からサンプリングできて、それから標準偏差を乗じて平均を加えます。これは勾配がサンプルを通して推論ネットワーク・パラメータに渡せることを確かなものにします。

 

ネットワーク・アーキテクチャ

推論ネットワークのために、2 つの畳み込み層とそれに続く完全結合層を使用します。生成ネットワークでは、完全結合層と続く 3 つの convolution transpose 層を使用してこのアーキテクチャを反映 (= mirror) します (a.k.a. あるコンテキストでは deconvolutional 層)。注意してください、VAE を訓練するときバッチ正規化の使用を回避することは一般的な実践です、何故ならばミニバッチを使用することによる追加的な偶然性はサンプリングからの偶然性の上に不安定性を悪化させるかもしれないためです。

class CVAE(tf.keras.Model):
  def __init__(self, latent_dim):
    super(CVAE, self).__init__()
    self.latent_dim = latent_dim
    self.inference_net = tf.keras.Sequential(
      [
          tf.keras.layers.InputLayer(input_shape=(28, 28, 1)),
          tf.keras.layers.Conv2D(
              filters=32, kernel_size=3, strides=(2, 2), activation='relu'),
          tf.keras.layers.Conv2D(
              filters=64, kernel_size=3, strides=(2, 2), activation='relu'),
          tf.keras.layers.Flatten(),
          # No activation
          tf.keras.layers.Dense(latent_dim + latent_dim),
      ]
    )

    self.generative_net = tf.keras.Sequential(
        [
          tf.keras.layers.InputLayer(input_shape=(latent_dim,)),
          tf.keras.layers.Dense(units=7*7*32, activation=tf.nn.relu),
          tf.keras.layers.Reshape(target_shape=(7, 7, 32)),
          tf.keras.layers.Conv2DTranspose(
              filters=64,
              kernel_size=3,
              strides=(2, 2),
              padding="SAME",
              activation='relu'),
          tf.keras.layers.Conv2DTranspose(
              filters=32,
              kernel_size=3,
              strides=(2, 2),
              padding="SAME",
              activation='relu'),
          # No activation
          tf.keras.layers.Conv2DTranspose(
              filters=1, kernel_size=3, strides=(1, 1), padding="SAME"),
        ]
    )

  @tf.function
  def sample(self, eps=None):
    if eps is None:
      eps = tf.random.normal(shape=(100, self.latent_dim))
    return self.decode(eps, apply_sigmoid=True)

  def encode(self, x):
    mean, logvar = tf.split(self.inference_net(x), num_or_size_splits=2, axis=1)
    return mean, logvar

  def reparameterize(self, mean, logvar):
    eps = tf.random.normal(shape=mean.shape)
    return eps * tf.exp(logvar * .5) + mean

  def decode(self, z, apply_sigmoid=False):
    logits = self.generative_net(z)
    if apply_sigmoid:
      probs = tf.sigmoid(logits)
      return probs

    return logits

 

損失関数と optimizer を定義する

VAE は周辺対数尤度上のエビデンス下限 (ELBO, evidence lower bound) を最大化することにより訓練されます :

$$\log p(x) \ge \text{ELBO} = \mathbb{E}_{q(z|x)}\left[\log \frac{p(x, z)}{q(z|x)}\right].$$

実際に、この期待値の単一サンプル・モンテカルロ推定を最適化します :

$$\log p(x| z) + \log p(z) - \log q(z|x),$$

ここで $z$ は $q(z|x)$ からサンプリングされます。

Note: 私達はまた KL 項を解析的に計算することもできますが、ここでは単純化のために総ての 3 つの項をモンテカルロ estimator に組み入れます。

optimizer = tf.keras.optimizers.Adam(1e-4)

def log_normal_pdf(sample, mean, logvar, raxis=1):
  log2pi = tf.math.log(2. * np.pi)
  return tf.reduce_sum(
      -.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi),
      axis=raxis)

@tf.function
def compute_loss(model, x):
  mean, logvar = model.encode(x)
  z = model.reparameterize(mean, logvar)
  x_logit = model.decode(z)

  cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_logit, labels=x)
  logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
  logpz = log_normal_pdf(z, 0., 0.)
  logqz_x = log_normal_pdf(z, mean, logvar)
  return -tf.reduce_mean(logpx_z + logpz - logqz_x)

@tf.function
def compute_apply_gradients(model, x, optimizer):
  with tf.GradientTape() as tape:
    loss = compute_loss(model, x)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 

訓練

  • データセットに渡り反復することから始めます。
  • 各反復の間、近似事後分布 $q(z|x)$ の平均と対数分散パラメータのセットを得るために画像をエンコーダに渡します。
  • それから $q(z|x)$ からサンプリングするために再パラメータ化トリックを適用します。
  • 最後に、生成分布 $p(x|z)$ のロジットを得るために再パラメータ化されたサンプルをデコーダに渡します。
  • Note: 訓練セットの 60k データポイントとテストセットの 10k データポイント持つ、keras によりロードされたデータセットを使用しますので、テストセット上の結果としての ELBO は (Larochelle の MNIST の動的二値化 (= dynamic binarization) を使用している) 文献で報告されている結果よりも僅かにより高いです。

 

画像を生成する

  • 訓練の後、幾つかの画像を生成する時です。
  • 単位ガウス事前分布 $p(z)$ から潜在ベクトルのセットをサンプリングすることから始めます。
  • それから generator は潜在サンプル $z$ を観測のロジットに変換し、分布 $p(x|z)$ を与えます。
  • ここで Bernoulli 分布の確率をプロットします。
epochs = 100
latent_dim = 50
num_examples_to_generate = 16

# keeping the random vector constant for generation (prediction) so
# it will be easier to see the improvement.
random_vector_for_generation = tf.random.normal(
    shape=[num_examples_to_generate, latent_dim])
model = CVAE(latent_dim)
def generate_and_save_images(model, epoch, test_input):
  predictions = model.sample(test_input)
  fig = plt.figure(figsize=(4,4))

  for i in range(predictions.shape[0]):
      plt.subplot(4, 4, i+1)
      plt.imshow(predictions[i, :, :, 0], cmap='gray')
      plt.axis('off')

  # tight_layout minimizes the overlap between 2 sub-plots
  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
  plt.show()
generate_and_save_images(model, 0, random_vector_for_generation)

for epoch in range(1, epochs + 1):
  start_time = time.time()
  for train_x in train_dataset:
    compute_apply_gradients(model, train_x, optimizer)
  end_time = time.time()

  if epoch % 1 == 0:
    loss = tf.keras.metrics.Mean()
    for test_x in test_dataset:
      loss(compute_loss(model, test_x))
    elbo = -loss.result()
    display.clear_output(wait=False)
    print('Epoch: {}, Test set ELBO: {}, '
          'time elapse for current epoch {}'.format(epoch,
                                                    elbo,
                                                    end_time - start_time))
    generate_and_save_images(
        model, epoch, random_vector_for_generation)
Epoch: 100, Test set ELBO: -78.4385757446289, time elapse for current epoch 2.0967400074005127

 

エポック数を使用して画像を表示する

def display_image(epoch_no):
  return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))
plt.imshow(display_image(epochs))
plt.axis('off')# Display images
(-0.5, 287.5, 287.5, -0.5)

 

総てのセーブされた画像の GIF を生成する

anim_file = 'cvae.gif'

with imageio.get_writer(anim_file, mode='I') as writer:
  filenames = glob.glob('image*.png')
  filenames = sorted(filenames)
  last = -1
  for i,filename in enumerate(filenames):
    frame = 2*(i**0.5)
    if round(frame) > round(last):
      last = frame
    else:
      continue
    image = imageio.imread(filename)
    writer.append_data(image)
  image = imageio.imread(filename)
  writer.append_data(image)

import IPython
if IPython.version_info >= (6,2,0,''):
  display.Image(filename=anim_file)

Colab で作業している場合には下のコードでアニメーションをダウンロードできます :

try:
  from google.colab import files
except ImportError:
   pass
else:
  files.download(anim_file)
 

以上






クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2019年11月
月 火 水 木 金 土 日
 123
45678910
11121314151617
18192021222324
252627282930  
« 10月   12月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme