Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

AutoKeras 1.0 : Tutorials : テキスト分類

Posted on 03/21/2020 by Sales Information

AutoKeras 1.0 : Tutorials : テキスト分類 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 03/21/2020

* 本ページは、AutoKeras の以下のページを翻訳した上で適宜、補足説明したものです:

  • Getting Started : Text Classification

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

Tutorials : テキスト分類

単純なサンプル

最初のステップは貴方のデータを準備することです。ここではサンプルとして IMDB データセット を使用します。

import numpy as np
from tensorflow.keras.datasets import imdb

# Load the integer sequence the IMDB dataset with Keras.
index_offset = 3  # word index offset
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=1000,
                                                      index_from=index_offset)
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
# Prepare the dictionary of index to word.
word_to_id = imdb.get_word_index()
word_to_id = {k: (v + index_offset) for k, v in word_to_id.items()}
word_to_id[""] = 0
word_to_id[""] = 1
word_to_id[""] = 2
id_to_word = {value: key for key, value in word_to_id.items()}
# Convert the word indices to words.
x_train = list(map(lambda sentence: ' '.join(
    id_to_word[i] for i in sentence), x_train))
x_test = list(map(lambda sentence: ' '.join(
    id_to_word[i] for i in sentence), x_test))
x_train = np.array(x_train, dtype=np.str)
x_test = np.array(x_test, dtype=np.str)
print(x_train.shape)  # (25000,)
print(y_train.shape)  # (25000, 1)
print(x_train[0][:50])  #  this film was just brilliant casting 

2 番目のステップは TextClassifier を実行することです。

import autokeras as ak

# Initialize the text classifier.
clf = ak.TextClassifier(max_trials=10) # It tries 10 different models.
# Feed the text classifier with training data.
clf.fit(x_train, y_train)
# Predict with the best model.
predicted_y = clf.predict(x_test)
# Evaluate the best model with testing data.
print(clf.evaluate(x_test, y_test))

 

検証データ

デフォルトでは、AutoKeras は訓練データの最後の 20% を検証データとして使用します。下のサンプルで示されるように、パーセンテージを指定するために validation_split を使用できます。

clf.fit(x_train,
        y_train,
        # Split the training data and use the last 15% as validation data.
        validation_split=0.15)

それを訓練データから分割する代わりに、validation_data で貴方自身の検証セットを使用することもできます。

split = 5000
x_val = x_train[split:]
y_val = y_train[split:]
x_train = x_train[:split]
y_train = y_train[:split]
clf.fit(x_train,
        y_train,
        # Use your own validation set.
        validation_data=(x_val, y_val))

 

カスタマイズされた探索空間

上級ユーザのために、TextClassifier の代わりに AutoModel を使用して探索空間をカスタマイズしても良いです。幾つかの高位設定のために TextBlock を設定することができます、e.g., 使用するテキストベクトル化方法のタイプのための vectorizer。’sequence’ を使用できます、これは単語を整数に変換するために TextToInteSequence を使用して整数シークエンスを埋め込むために Embedding を使用します、あるいは ‘ngram’ を使用できます、これはセンテンスをベクトル化するために TextToNgramVector を使用します。これらの引数を指定しないこともできます、これは異なる選択が自動的に調整されるようにするでしょう。詳細のために次のサンプルを見てください。

import autokeras as ak

input_node = ak.TextInput()
output_node = ak.TextBlock(vectorizer='ngram')(input_node)
output_node = ak.ClassificationHead()(output_node)
clf = ak.AutoModel(inputs=input_node, outputs=output_node, max_trials=10)
clf.fit(x_train, y_train)

AutoModel の利用方法は Keras の functional API に類似しています。基本的には、グラフを構築しています、そのエッジはブロックでノードはブロックの中間出力です。output_node = ak.[some_block]([block_args])(input_node) で input_node から output_node へのエッジを追加します。

更に探索空間をカスタマイズするためにより極め細かいブロックを利用することもまた可能です。次のサンプルを見てください。

import autokeras as ak

input_node = ak.TextInput()
output_node = ak.TextToIntSequence()(input_node)
output_node = ak.Embedding()(output_node)
# Use separable Conv layers in Keras.
output_node = ak.ConvBlock(separable=True)(output_node)
output_node = ak.ClassificationHead()(output_node)
clf = ak.AutoModel(inputs=input_node, outputs=output_node, max_trials=10)
clf.fit(x_train, y_train)

 

データ形式

AutoKeras TextClassifier はデータ形式について非常に柔軟です。

テキストについて、入力データは分類ラベルのために 1-次元であるべきです。AutoKeras は plain ラベル, i.e. 文字列か整数、そして one-hot エンコードラベル, i.e. 0 と 1 のベクトルの両者を受け取ります。

訓練データのために tf.data.Dataset 形式の使用もサポートします。ラベルは tensorflow Dataset にラップされるためマルチクラス分類のために one-hot エンコードでなければなりません。IMDB データセットは二値分類ですので、それは one-hot エンコードされるべきではありません。

import tensorflow as tf
train_set = tf.data.Dataset.from_tensor_slices(((x_train, ), (y_train, )))
test_set = tf.data.Dataset.from_tensor_slices(((x_test, ), (y_test, )))

clf = ak.TextClassifier(max_trials=10)
# Feed the tensorflow Dataset to the classifier.
clf.fit(train_set)
# Predict with the best model.
predicted_y = clf.predict(test_set)
# Evaluate the best model with testing data.
print(clf.evaluate(test_set))
 

以上






クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年3月
月 火 水 木 金 土 日
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
« 2月   4月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme