Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

TF-Agents 0.4 : Tutorials : ドライバー

Posted on 04/20/2020 by Sales Information

TF-Agents 0.4 Tutorials : ドライバー (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 04/20/2020 (0.4)

* 本ページは、TF Agents の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Drivers

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

ドライバー

イントロダクション

強化学習の一般的なパターンはステップかエピソードの指定数のために環境でポリシーを実行します。これは例えば、データ収集、評価そしてエージェントのビデオ生成する間に発生します。

これは Python で書くことは比較的簡単である一方、TensorFlow で書いてデバッグすることは遥かにより複雑です、何故ならばそれは tf.while loops, tf.cond と tf.control_dependencies を伴うからです。そのためこの実行ループの概念をドライバーと呼ばれるクラスに抽象して Python と TensorFlow の両者で良くテストされた実装を提供します。

追加で、各ステップでドライバーに遭遇したデータは Trajectory と呼ばれる名前付きタプルにセーブされて再生バッファとメトリクスのような観測者のセットにブロードキャストされます。このデータは環境からの観測、ポリシーにより勧められるアクション、得られた報酬、現在と次のステップのタイプ、等。

 

セットアップ

tf-agents か gym をまだインストールしていないのであれば、以下を実行します :

!pip install --upgrade tensorflow-probability
!pip install tf-agents
!pip install gym
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.policies import random_py_policy
from tf_agents.policies import random_tf_policy
from tf_agents.metrics import py_metrics
from tf_agents.metrics import tf_metrics
from tf_agents.drivers import py_driver
from tf_agents.drivers import dynamic_episode_driver

tf.compat.v1.enable_v2_behavior()

 

Python ドライバー

PyDriver クラスは各ステップで更新するために python 環境、python ポリシーそして観測者のリストを取ります。主要なメソッドは run() で、これはポリシーからのアクションを使用して少なくとも以下の停止基準の一つに遭遇するまで環境に踏み入ります : ステップ数が max_steps に到達するかエピソード数が max_episodes に達する。

実装はおおよそ次のようなものです :

class PyDriver(object):

  def __init__(self, env, policy, observers, max_steps=1, max_episodes=1):
    self._env = env
    self._policy = policy
    self._observers = observers or []
    self._max_steps = max_steps or np.inf
    self._max_episodes = max_episodes or np.inf

  def run(self, time_step, policy_state=()):
    num_steps = 0
    num_episodes = 0
    while num_steps < self._max_steps and num_episodes < self._max_episodes:

      # Compute an action using the policy for the given time_step
      action_step = self._policy.action(time_step, policy_state)

      # Apply the action to the environment and get the next step
      next_time_step = self._env.step(action_step.action)

      # Package information into a trajectory
      traj = trajectory.Trajectory(
         time_step.step_type,
         time_step.observation,
         action_step.action,
         action_step.info,
         next_time_step.step_type,
         next_time_step.reward,
         next_time_step.discount)

      for observer in self._observers:
        observer(traj)

      # Update statistics to check termination
      num_episodes += np.sum(traj.is_last())
      num_steps += np.sum(~traj.is_boundary())

      time_step = next_time_step
      policy_state = action_step.state

    return time_step, policy_state

今は、カートポール環境でランダムポリシーを実行するサンプルを通して実行しましょう、結果を再生バッファにセーブして幾つかのメトリクスを計算します。

env = suite_gym.load('CartPole-v0')
policy = random_py_policy.RandomPyPolicy(time_step_spec=env.time_step_spec(), 
                                         action_spec=env.action_spec())
replay_buffer = []
metric = py_metrics.AverageReturnMetric()
observers = [replay_buffer.append, metric]
driver = py_driver.PyDriver(
    env, policy, observers, max_steps=20, max_episodes=1)

initial_time_step = env.reset()
final_time_step, _ = driver.run(initial_time_step)

print('Replay Buffer:')
for traj in replay_buffer:
  print(traj)

print('Average Return: ', metric.result())

 

TensorFlow ドライバー

私達はまた TensorFlow のドライバーも持ちます、これは機能的には Python ドライバーに類似していますが、TF 環境, TF ポリシー, TF 観測者等を利用します。現在は 2 つの TensorFlow ドライバーを持ちます : DynamicStepDriver, これは (正当な) 環境ステップの与えられた数の後停止します、そして DynamicEpisodeDriver, これはエピソードの与えられた数の後停止します。アクションの DynamicEpisode のサンプルを見ましょう。

env = suite_gym.load('CartPole-v0')
tf_env = tf_py_environment.TFPyEnvironment(env)

tf_policy = random_tf_policy.RandomTFPolicy(action_spec=tf_env.action_spec(),
                                            time_step_spec=tf_env.time_step_spec())


num_episodes = tf_metrics.NumberOfEpisodes()
env_steps = tf_metrics.EnvironmentSteps()
observers = [num_episodes, env_steps]
driver = dynamic_episode_driver.DynamicEpisodeDriver(
    tf_env, tf_policy, observers, num_episodes=2)

# Initial driver.run will reset the environment and initialize the policy.
final_time_step, policy_state = driver.run()

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
# Continue running from previous state
final_time_step, _ = driver.run(final_time_step, policy_state)

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
 

以上






クラスキャット

最近の投稿

  • LangGraph 0.5 on Colab : Get started : Tavily Web 検索ツールの追加
  • LangGraph 0.5 on Colab : Get started : カスタム・ワークフローの構築
  • LangGraph 0.5 on Colab : Get started : クイックスタート
  • LangGraph on Colab : SQL エージェントの構築
  • LangGraph on Colab : マルチエージェント・スーパーバイザー

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年4月
月 火 水 木 金 土 日
 12345
6789101112
13141516171819
20212223242526
27282930  
« 3月   5月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme