Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Sonnet 2.0 : Tutorials : snt.distribute で分散訓練 (CIFAR-10)

Posted on 06/10/2020 by Sales Information

Sonnet 2.0 : Tutorials : snt.distribute で分散訓練 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/10/2020

* 本ページは、Sonnet の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Distributed training with snt.distribute

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

snt.distribute で分散訓練

イントロダクション

このチュートリアルは Sonnet 2 “Hello, world!” サンプル (MLP on MNIST) を既に完了していることを仮定しています。

このチュートリアルでは、より大きなモデルとより大きなデータセットで物事をスケールアップしていきます、そして計算をマルチデバイスに渡り分散していきます。

 

序

import sys
assert sys.version_info >= (3, 6), "Sonnet 2 requires Python >=3.6"
!pip install dm-sonnet tqdm
import sonnet as snt
import tensorflow as tf
import tensorflow_datasets as tfds
print("TensorFlow version: {}".format(tf.__version__))
print("    Sonnet version: {}".format(snt.__version__))

最後に利用可能な GPU を素早く見ましょう :

!grep Model: /proc/driver/nvidia/gpus/*/information | awk '{$1="";print$0}'

 

分散ストラテジー

幾つかのデバイスに渡り計算を分散するためのストラテジーが必要です。Google Colab は単一 GPU を提供するだけですのでそれを 4 つの仮想 GPU に分割します :

physical_gpus = tf.config.experimental.list_physical_devices("GPU")
physical_gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
tf.config.experimental.set_virtual_device_configuration(
    physical_gpus[0],
    [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=2000)] * 4
)
gpus = tf.config.experimental.list_logical_devices("GPU")
gpus
[LogicalDevice(name='/job:localhost/replica:0/task:0/device:GPU:0', device_type='GPU'),
 LogicalDevice(name='/job:localhost/replica:0/task:0/device:GPU:1', device_type='GPU'),
 LogicalDevice(name='/job:localhost/replica:0/task:0/device:GPU:2', device_type='GPU'),
 LogicalDevice(name='/job:localhost/replica:0/task:0/device:GPU:3', device_type='GPU')]

Sonnet optimizer を使用するとき、snt.distribute からの Replicator か TpuReplicator を利用しなければあんりません、あるいは tf.distribute.OneDeviceStrategy を利用できます。Replicator は MirroredStrategy と等値でそして TpuReplicator は TPUStrategy と等値です。

strategy = snt.distribute.Replicator(
    ["/device:GPU:{}".format(i) for i in range(4)],
    tf.distribute.ReductionToOneDevice("GPU:0"))

 

データセット

基本的には MNIST サンプルと同じですが、今回は CIFAR-10 を使用しています。CIFAR-10 は 10 の異なるクラス (飛行機、自動車、鳥、猫、鹿、犬、蛙、馬、船そしてトラック) にある 32×32 ピクセルカラー画像を含みます。

# NOTE: This is the batch size across all GPUs.
batch_size = 100 * 4

def process_batch(images, labels):
  images = tf.cast(images, dtype=tf.float32)
  images = ((images / 255.) - .5) * 2.
  return images, labels

def cifar10(split):
  dataset = tfds.load("cifar10", split=split, as_supervised=True)
  dataset = dataset.map(process_batch)
  dataset = dataset.batch(batch_size)
  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
  dataset = dataset.cache()
  return dataset

cifar10_train = cifar10("train").shuffle(10)
cifar10_test = cifar10("test")

 

モデル & Optimizer

都合良く、snt.nets にこのデータセットのために特に設計された事前ビルドされたモデルがあります。

作成された任意の変数が正しく分散されることを確実にするために、モデルと optimizer は strategy スコープ内で構築しなければなりません。代わりに、tf.distribute.experimental_set_strategy を使用してプログラム全体のためのスコープに入ることもでできるでしょう。

learning_rate = 0.1

with strategy.scope():
  model = snt.nets.Cifar10ConvNet()
  optimizer = snt.optimizers.Momentum(learning_rate, 0.9)

 

モデルを訓練する

Sonnet optimizer はできる限り綺麗でそして単純であるように設計されています。それらは分散実行を扱うためのどのようなコードも含みません。従ってそれはコードの 2, 3 の追加行を必要とします。

異なるデバイス上で計算された勾配を集めなければなりません。これは ReplicaContext.all_reduce を使用して成されます。

Replicator / TpuReplicator を使用するとき values が総てのレプリカで同一で在り続けることを確かなものにすることはユーザの責任であることに注意してください。

def step(images, labels):
  """Performs a single training step, returning the cross-entropy loss."""
  with tf.GradientTape() as tape:
    logits = model(images, is_training=True)["logits"]
    loss = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,
                                                       logits=logits))

  grads = tape.gradient(loss, model.trainable_variables)

  # Aggregate the gradients from the full batch.
  replica_ctx = tf.distribute.get_replica_context()
  grads = replica_ctx.all_reduce("mean", grads)

  optimizer.apply(grads, model.trainable_variables)
  return loss

@tf.function
def train_step(images, labels):
  per_replica_loss = strategy.run(step, args=(images, labels))
  return strategy.reduce("sum", per_replica_loss, axis=None)

def train_epoch(dataset):
  """Performs one epoch of training, returning the mean cross-entropy loss."""
  total_loss = 0.0
  num_batches = 0

  # Loop over the entire training set.
  for images, labels in dataset:
    total_loss += train_step(images, labels).numpy()
    num_batches += 1

  return total_loss / num_batches

cifar10_train_dist = strategy.experimental_distribute_dataset(cifar10_train)

for epoch in range(20):
  print("Training epoch", epoch, "...", end=" ")
  print("loss :=", train_epoch(cifar10_train_dist))

 

モデルを評価する

バッチ次元に渡り削減するために strategy.reduce による axis パラメータの使用方法に注意してください。

num_cifar10_test_examples = 10000

def is_predicted(images, labels):
  logits = model(images, is_training=False)["logits"]
  # The reduction over the batch happens in `strategy.reduce`, below.
  return tf.cast(tf.equal(labels, tf.argmax(logits, axis=1)), dtype=tf.int32)

cifar10_test_dist = strategy.experimental_distribute_dataset(cifar10_test)

@tf.function
def evaluate():
  """Returns the top-1 accuracy over the entire test set."""
  total_correct = 0

  for images, labels in cifar10_test_dist:
    per_replica_correct = strategy.run(is_predicted, args=(images, labels))
    total_correct += strategy.reduce("sum", per_replica_correct, axis=0)

  return tf.cast(total_correct, tf.float32) / num_cifar10_test_examples

print("Testing...", end=" ")
print("top-1 accuracy =", evaluate().numpy())
 

以上






クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年6月
月 火 水 木 金 土 日
1234567
891011121314
15161718192021
22232425262728
2930  
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme