Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Sonnet 2.0 : Tutorials : VQ-VAE 訓練サンプル

Posted on 06/10/2020 by Sales Information

Sonnet 2.0 : Tutorials : VQ-VAE 訓練サンプル (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/10/2020

* 本ページは、Sonnet の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • VQ-VAE training example

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

VQ-VAE 訓練サンプル

TF 2 / Sonnet 2 を使用して、https://arxiv.org/abs/1711.00937 で指定されるモデルをどのように訓練するかの実演です。

Mac と Linux 上、単純に各セルを順番に実行してください。

!pip install dm-sonnet dm-tree
Requirement already satisfied: dm-sonnet in /tmp/sonnet-nb-env/lib/python3.7/site-packages (2.0.0)
Requirement already satisfied: dm-tree in /tmp/sonnet-nb-env/lib/python3.7/site-packages (0.1.5)
Requirement already satisfied: six>=1.12.0 in /tmp/sonnet-nb-env/lib/python3.7/site-packages (from dm-sonnet) (1.14.0)
Requirement already satisfied: tabulate>=0.7.5 in /tmp/sonnet-nb-env/lib/python3.7/site-packages (from dm-sonnet) (0.8.7)
Requirement already satisfied: absl-py>=0.7.1 in /tmp/sonnet-nb-env/lib/python3.7/site-packages (from dm-sonnet) (0.9.0)
Requirement already satisfied: numpy>=1.16.3 in /tmp/sonnet-nb-env/lib/python3.7/site-packages (from dm-sonnet) (1.18.3)
Requirement already satisfied: wrapt>=1.11.1 in /tmp/sonnet-nb-env/lib/python3.7/site-packages (from dm-sonnet) (1.12.1)
import matplotlib.pyplot as plt
import numpy as np
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
import tree

try:
  import sonnet.v2 as snt
  tf.enable_v2_behavior()
except ImportError:
  import sonnet as snt

print("TensorFlow version {}".format(tf.__version__))
print("Sonnet version {}".format(snt.__version__))
TensorFlow version 2.1.0
Sonnet version 2.0.0

 

Cifar10 データをダウンロードする

これはインターネットへの接続を必要として ~160MB をダウンロードします。

cifar10 = tfds.as_numpy(tfds.load("cifar10:3.0.2", split="train+test", batch_size=-1))
cifar10.pop("id", None)
cifar10.pop("label")
tree.map_structure(lambda x: f'{x.dtype.name}{list(x.shape)}', cifar10)
{'image': 'uint8[60000, 32, 32, 3]'}

 

データを Numpy にロードする

下で平均二乗誤差を正規化するために訓練セット全体の分散を計算します。

train_data_dict = tree.map_structure(lambda x: x[:40000], cifar10)
valid_data_dict = tree.map_structure(lambda x: x[40000:50000], cifar10)
test_data_dict = tree.map_structure(lambda x: x[50000:], cifar10)
def cast_and_normalise_images(data_dict):
  """Convert images to floating point with the range [-0.5, 0.5]"""
  images = data_dict['image']
  data_dict['image'] = (tf.cast(images, tf.float32) / 255.0) - 0.5
  return data_dict

train_data_variance = np.var(train_data_dict['image'] / 255.0)
print('train data variance: %s' % train_data_variance)
train data variance: 0.06327039811675479

 

エンコーダ & デコーダ・アーキテクチャ

  def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens,
               name=None):
    super(ResidualStack, self).__init__(name=name)
    self._num_hiddens = num_hiddens
    self._num_residual_layers = num_residual_layers
    self._num_residual_hiddens = num_residual_hiddens

    self._layers = []
    for i in range(num_residual_layers):
      conv3 = snt.Conv2D(
          output_channels=num_residual_hiddens,
          kernel_shape=(3, 3),
          stride=(1, 1),
          name="res3x3_%d" % i)
      conv1 = snt.Conv2D(
          output_channels=num_hiddens,
          kernel_shape=(1, 1),
          stride=(1, 1),
          name="res1x1_%d" % i)
      self._layers.append((conv3, conv1))

  def __call__(self, inputs):
    h = inputs
    for conv3, conv1 in self._layers:
      conv3_out = conv3(tf.nn.relu(h))
      conv1_out = conv1(tf.nn.relu(conv3_out))
      h += conv1_out
    return tf.nn.relu(h)  # Resnet V1 style


class Encoder(snt.Module):
  def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens,
               name=None):
    super(Encoder, self).__init__(name=name)
    self._num_hiddens = num_hiddens
    self._num_residual_layers = num_residual_layers
    self._num_residual_hiddens = num_residual_hiddens

    self._enc_1 = snt.Conv2D(
        output_channels=self._num_hiddens // 2,
        kernel_shape=(4, 4),
        stride=(2, 2),
        name="enc_1")
    self._enc_2 = snt.Conv2D(
        output_channels=self._num_hiddens,
        kernel_shape=(4, 4),
        stride=(2, 2),
        name="enc_2")
    self._enc_3 = snt.Conv2D(
        output_channels=self._num_hiddens,
        kernel_shape=(3, 3),
        stride=(1, 1),
        name="enc_3")
    self._residual_stack = ResidualStack(
        self._num_hiddens,
        self._num_residual_layers,
        self._num_residual_hiddens)

  def __call__(self, x):
    h = tf.nn.relu(self._enc_1(x))
    h = tf.nn.relu(self._enc_2(h))
    h = tf.nn.relu(self._enc_3(h))
    return self._residual_stack(h)


class Decoder(snt.Module):
  def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens,
               name=None):
    super(Decoder, self).__init__(name=name)
    self._num_hiddens = num_hiddens
    self._num_residual_layers = num_residual_layers
    self._num_residual_hiddens = num_residual_hiddens

    self._dec_1 = snt.Conv2D(
        output_channels=self._num_hiddens,
        kernel_shape=(3, 3),
        stride=(1, 1),
        name="dec_1")
    self._residual_stack = ResidualStack(
        self._num_hiddens,
        self._num_residual_layers,
        self._num_residual_hiddens)
    self._dec_2 = snt.Conv2DTranspose(
        output_channels=self._num_hiddens // 2,
        output_shape=None,
        kernel_shape=(4, 4),
        stride=(2, 2),
        name="dec_2")
    self._dec_3 = snt.Conv2DTranspose(
        output_channels=3,
        output_shape=None,
        kernel_shape=(4, 4),
        stride=(2, 2),
        name="dec_3")
    
  def __call__(self, x):
    h = self._dec_1(x)
    h = self._residual_stack(h)
    h = tf.nn.relu(self._dec_2(h))
    x_recon = self._dec_3(h)
    return x_recon
    

class VQVAEModel(snt.Module):
  def __init__(self, encoder, decoder, vqvae, pre_vq_conv1, 
               data_variance, name=None):
    super(VQVAEModel, self).__init__(name=name)
    self._encoder = encoder
    self._decoder = decoder
    self._vqvae = vqvae
    self._pre_vq_conv1 = pre_vq_conv1
    self._data_variance = data_variance

  def __call__(self, inputs, is_training):
    z = self._pre_vq_conv1(self._encoder(inputs))
    vq_output = self._vqvae(z, is_training=is_training)
    x_recon = self._decoder(vq_output['quantize'])
    recon_error = tf.reduce_mean((x_recon - inputs) ** 2) / self._data_variance
    loss = recon_error + vq_output['loss']
    return {
        'z': z,
        'x_recon': x_recon,
        'loss': loss,
        'recon_error': recon_error,
        'vq_output': vq_output,
    }

 

モデルを構築して訓練する

%%time

# Set hyper-parameters.
batch_size = 32
image_size = 32

# 100k steps should take < 30 minutes on a modern (>= 2017) GPU.
# 10k steps gives reasonable accuracy with VQVAE on Cifar10.
num_training_updates = 10000

num_hiddens = 128
num_residual_hiddens = 32
num_residual_layers = 2
# These hyper-parameters define the size of the model (number of parameters and layers).
# The hyper-parameters in the paper were (For ImageNet):
# batch_size = 128
# image_size = 128
# num_hiddens = 128
# num_residual_hiddens = 32
# num_residual_layers = 2

# This value is not that important, usually 64 works.
# This will not change the capacity in the information-bottleneck.
embedding_dim = 64

# The higher this value, the higher the capacity in the information bottleneck.
num_embeddings = 512

# commitment_cost should be set appropriately. It's often useful to try a couple
# of values. It mostly depends on the scale of the reconstruction cost
# (log p(x|z)). So if the reconstruction cost is 100x higher, the
# commitment_cost should also be multiplied with the same amount.
commitment_cost = 0.25

# Use EMA updates for the codebook (instead of the Adam optimizer).
# This typically converges faster, and makes the model less dependent on choice
# of the optimizer. In the VQ-VAE paper EMA updates were not used (but was
# developed afterwards). See Appendix of the paper for more details.
vq_use_ema = True

# This is only used for EMA updates.
decay = 0.99

learning_rate = 3e-4


# # Data Loading.
train_dataset = (
    tf.data.Dataset.from_tensor_slices(train_data_dict)
    .map(cast_and_normalise_images)
    .shuffle(10000)
    .repeat(-1)  # repeat indefinitely
    .batch(batch_size, drop_remainder=True)
    .prefetch(-1))

valid_dataset = (
    tf.data.Dataset.from_tensor_slices(valid_data_dict)
    .map(cast_and_normalise_images)
    .repeat(1)  # 1 epoch
    .batch(batch_size)
    .prefetch(-1))

# # Build modules.
encoder = Encoder(num_hiddens, num_residual_layers, num_residual_hiddens)
decoder = Decoder(num_hiddens, num_residual_layers, num_residual_hiddens)
pre_vq_conv1 = snt.Conv2D(output_channels=embedding_dim,
    kernel_shape=(1, 1),
    stride=(1, 1),
    name="to_vq")

if vq_use_ema:
  vq_vae = snt.nets.VectorQuantizerEMA(
      embedding_dim=embedding_dim,
      num_embeddings=num_embeddings,
      commitment_cost=commitment_cost,
      decay=decay)
else:
  vq_vae = snt.nets.VectorQuantizer(
      embedding_dim=embedding_dim,
      num_embeddings=num_embeddings,
      commitment_cost=commitment_cost)
  
model = VQVAEModel(encoder, decoder, vq_vae, pre_vq_conv1,
                   data_variance=train_data_variance)

optimizer = snt.optimizers.Adam(learning_rate=learning_rate)

@tf.function
def train_step(data):
  with tf.GradientTape() as tape:
    model_output = model(data['image'], is_training=True)
  trainable_variables = model.trainable_variables
  grads = tape.gradient(model_output['loss'], trainable_variables)
  optimizer.apply(grads, trainable_variables)

  return model_output

train_losses = []
train_recon_errors = []
train_perplexities = []
train_vqvae_loss = []

for step_index, data in enumerate(train_dataset):
  train_results = train_step(data)
  train_losses.append(train_results['loss'])
  train_recon_errors.append(train_results['recon_error'])
  train_perplexities.append(train_results['vq_output']['perplexity'])
  train_vqvae_loss.append(train_results['vq_output']['loss'])

  if (step_index + 1) % 100 == 0:
    print('%d train loss: %f ' % (step_index + 1,
                                   np.mean(train_losses[-100:])) +
          ('recon_error: %.3f ' % np.mean(train_recon_errors[-100:])) +
          ('perplexity: %.3f ' % np.mean(train_perplexities[-100:])) +
          ('vqvae loss: %.3f' % np.mean(train_vqvae_loss[-100:])))
  if step_index == num_training_updates:
    break
WARNING:tensorflow:AutoGraph could not transform <function train_step at 0x7f1016cb5f80> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: Unable to locate the source code of <function train_step at 0x7f1016cb5f80>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING:tensorflow:AutoGraph could not transform <function train_step at 0x7f1016cb5f80> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: Unable to locate the source code of <function train_step at 0x7f1016cb5f80>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING: AutoGraph could not transform <function train_step at 0x7f1016cb5f80> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: Unable to locate the source code of <function train_step at 0x7f1016cb5f80>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING:tensorflow:From /tmp/sonnet-nb-env/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
WARNING:tensorflow:From /tmp/sonnet-nb-env/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
100 train loss: 0.523625 recon_error: 0.483 perplexity: 10.356 vqvae loss: 0.041
200 train loss: 0.248232 recon_error: 0.223 perplexity: 18.294 vqvae loss: 0.026
300 train loss: 0.215068 recon_error: 0.190 perplexity: 23.106 vqvae loss: 0.025
400 train loss: 0.191891 recon_error: 0.164 perplexity: 29.139 vqvae loss: 0.028
500 train loss: 0.180945 recon_error: 0.147 perplexity: 34.253 vqvae loss: 0.033
600 train loss: 0.167115 recon_error: 0.134 perplexity: 39.961 vqvae loss: 0.033
700 train loss: 0.157724 recon_error: 0.124 perplexity: 46.521 vqvae loss: 0.033
800 train loss: 0.153761 recon_error: 0.119 perplexity: 53.559 vqvae loss: 0.035
900 train loss: 0.145033 recon_error: 0.112 perplexity: 62.442 vqvae loss: 0.033
1000 train loss: 0.137589 recon_error: 0.105 perplexity: 71.831 vqvae loss: 0.033
1100 train loss: 0.133044 recon_error: 0.101 perplexity: 79.135 vqvae loss: 0.032
1200 train loss: 0.129990 recon_error: 0.098 perplexity: 87.959 vqvae loss: 0.032
1300 train loss: 0.126507 recon_error: 0.095 perplexity: 96.704 vqvae loss: 0.031
1400 train loss: 0.122403 recon_error: 0.092 perplexity: 104.202 vqvae loss: 0.031
1500 train loss: 0.122003 recon_error: 0.091 perplexity: 112.476 vqvae loss: 0.031
1600 train loss: 0.120192 recon_error: 0.089 perplexity: 122.269 vqvae loss: 0.032
1700 train loss: 0.117041 recon_error: 0.086 perplexity: 129.887 vqvae loss: 0.031
1800 train loss: 0.115004 recon_error: 0.083 perplexity: 138.603 vqvae loss: 0.032
1900 train loss: 0.114134 recon_error: 0.082 perplexity: 147.545 vqvae loss: 0.032
2000 train loss: 0.112840 recon_error: 0.081 perplexity: 153.993 vqvae loss: 0.032
2100 train loss: 0.108815 recon_error: 0.077 perplexity: 161.729 vqvae loss: 0.031
2200 train loss: 0.108596 recon_error: 0.078 perplexity: 171.971 vqvae loss: 0.031
2300 train loss: 0.108132 recon_error: 0.077 perplexity: 181.157 vqvae loss: 0.031
2400 train loss: 0.106273 recon_error: 0.076 perplexity: 186.200 vqvae loss: 0.031
2500 train loss: 0.105936 recon_error: 0.075 perplexity: 194.301 vqvae loss: 0.031
2600 train loss: 0.103880 recon_error: 0.073 perplexity: 201.674 vqvae loss: 0.030
2700 train loss: 0.101655 recon_error: 0.072 perplexity: 207.131 vqvae loss: 0.030
2800 train loss: 0.102564 recon_error: 0.072 perplexity: 216.983 vqvae loss: 0.030
2900 train loss: 0.101613 recon_error: 0.072 perplexity: 219.649 vqvae loss: 0.030
3000 train loss: 0.101227 recon_error: 0.071 perplexity: 226.789 vqvae loss: 0.030
3100 train loss: 0.100786 recon_error: 0.071 perplexity: 235.522 vqvae loss: 0.030
3200 train loss: 0.100130 recon_error: 0.070 perplexity: 243.282 vqvae loss: 0.030
3300 train loss: 0.097764 recon_error: 0.067 perplexity: 249.584 vqvae loss: 0.030
3400 train loss: 0.100630 recon_error: 0.069 perplexity: 260.551 vqvae loss: 0.031
3500 train loss: 0.099929 recon_error: 0.068 perplexity: 266.012 vqvae loss: 0.032
3600 train loss: 0.099245 recon_error: 0.067 perplexity: 272.031 vqvae loss: 0.032
3700 train loss: 0.097812 recon_error: 0.066 perplexity: 279.691 vqvae loss: 0.032
3800 train loss: 0.097137 recon_error: 0.064 perplexity: 284.240 vqvae loss: 0.033
3900 train loss: 0.099217 recon_error: 0.066 perplexity: 293.507 vqvae loss: 0.034
4000 train loss: 0.098570 recon_error: 0.065 perplexity: 300.891 vqvae loss: 0.034
4100 train loss: 0.099238 recon_error: 0.065 perplexity: 306.762 vqvae loss: 0.034
4200 train loss: 0.098172 recon_error: 0.064 perplexity: 311.918 vqvae loss: 0.035
4300 train loss: 0.096449 recon_error: 0.063 perplexity: 316.246 vqvae loss: 0.034
4400 train loss: 0.096487 recon_error: 0.062 perplexity: 319.591 vqvae loss: 0.034
4500 train loss: 0.096092 recon_error: 0.062 perplexity: 322.313 vqvae loss: 0.034
4600 train loss: 0.096474 recon_error: 0.062 perplexity: 324.620 vqvae loss: 0.035
4700 train loss: 0.097075 recon_error: 0.063 perplexity: 324.357 vqvae loss: 0.035
4800 train loss: 0.094709 recon_error: 0.060 perplexity: 326.024 vqvae loss: 0.034
4900 train loss: 0.096557 recon_error: 0.061 perplexity: 327.701 vqvae loss: 0.035
5000 train loss: 0.096185 recon_error: 0.061 perplexity: 326.664 vqvae loss: 0.035
5100 train loss: 0.095646 recon_error: 0.060 perplexity: 327.617 vqvae loss: 0.035
5200 train loss: 0.094689 recon_error: 0.059 perplexity: 328.692 vqvae loss: 0.035
5300 train loss: 0.097047 recon_error: 0.061 perplexity: 327.988 vqvae loss: 0.036
5400 train loss: 0.096259 recon_error: 0.060 perplexity: 327.075 vqvae loss: 0.036
5500 train loss: 0.094588 recon_error: 0.059 perplexity: 327.083 vqvae loss: 0.036
5600 train loss: 0.095947 recon_error: 0.060 perplexity: 328.213 vqvae loss: 0.036
5700 train loss: 0.095466 recon_error: 0.059 perplexity: 329.375 vqvae loss: 0.036
5800 train loss: 0.094849 recon_error: 0.059 perplexity: 326.821 vqvae loss: 0.036
5900 train loss: 0.093799 recon_error: 0.058 perplexity: 328.409 vqvae loss: 0.036
6000 train loss: 0.095373 recon_error: 0.059 perplexity: 326.791 vqvae loss: 0.036
6100 train loss: 0.093989 recon_error: 0.059 perplexity: 325.959 vqvae loss: 0.035
6200 train loss: 0.095549 recon_error: 0.059 perplexity: 330.829 vqvae loss: 0.036
6300 train loss: 0.094730 recon_error: 0.058 perplexity: 330.906 vqvae loss: 0.036
6400 train loss: 0.095038 recon_error: 0.058 perplexity: 329.353 vqvae loss: 0.037
6500 train loss: 0.095891 recon_error: 0.059 perplexity: 330.197 vqvae loss: 0.037
6600 train loss: 0.094342 recon_error: 0.058 perplexity: 331.240 vqvae loss: 0.036
6700 train loss: 0.095096 recon_error: 0.058 perplexity: 330.618 vqvae loss: 0.037
6800 train loss: 0.095581 recon_error: 0.059 perplexity: 324.493 vqvae loss: 0.037
6900 train loss: 0.094467 recon_error: 0.058 perplexity: 328.868 vqvae loss: 0.037
7000 train loss: 0.092967 recon_error: 0.057 perplexity: 328.276 vqvae loss: 0.036
7100 train loss: 0.094339 recon_error: 0.058 perplexity: 327.318 vqvae loss: 0.037
7200 train loss: 0.095227 recon_error: 0.058 perplexity: 326.306 vqvae loss: 0.037
7300 train loss: 0.093832 recon_error: 0.057 perplexity: 328.262 vqvae loss: 0.037
7400 train loss: 0.093331 recon_error: 0.057 perplexity: 327.987 vqvae loss: 0.037
7500 train loss: 0.094718 recon_error: 0.058 perplexity: 328.948 vqvae loss: 0.037
7600 train loss: 0.094199 recon_error: 0.058 perplexity: 328.468 vqvae loss: 0.037
7700 train loss: 0.094603 recon_error: 0.058 perplexity: 327.501 vqvae loss: 0.037
7800 train loss: 0.092299 recon_error: 0.056 perplexity: 327.630 vqvae loss: 0.037
7900 train loss: 0.095228 recon_error: 0.058 perplexity: 329.946 vqvae loss: 0.037
8000 train loss: 0.094291 recon_error: 0.058 perplexity: 326.790 vqvae loss: 0.037
8100 train loss: 0.094481 recon_error: 0.057 perplexity: 328.667 vqvae loss: 0.037
8200 train loss: 0.093992 recon_error: 0.057 perplexity: 329.655 vqvae loss: 0.037
8300 train loss: 0.093976 recon_error: 0.057 perplexity: 323.950 vqvae loss: 0.037
8400 train loss: 0.093422 recon_error: 0.057 perplexity: 324.523 vqvae loss: 0.036
8500 train loss: 0.092898 recon_error: 0.056 perplexity: 325.402 vqvae loss: 0.037
8600 train loss: 0.094298 recon_error: 0.057 perplexity: 329.251 vqvae loss: 0.037
8700 train loss: 0.094489 recon_error: 0.057 perplexity: 331.027 vqvae loss: 0.037
8800 train loss: 0.093022 recon_error: 0.056 perplexity: 327.495 vqvae loss: 0.037
8900 train loss: 0.093427 recon_error: 0.057 perplexity: 328.008 vqvae loss: 0.037
9000 train loss: 0.094884 recon_error: 0.058 perplexity: 327.057 vqvae loss: 0.037
9100 train loss: 0.093559 recon_error: 0.056 perplexity: 331.800 vqvae loss: 0.037
9200 train loss: 0.093282 recon_error: 0.056 perplexity: 328.689 vqvae loss: 0.037
9300 train loss: 0.092217 recon_error: 0.056 perplexity: 323.903 vqvae loss: 0.036
9400 train loss: 0.093902 recon_error: 0.057 perplexity: 326.350 vqvae loss: 0.037
9500 train loss: 0.093772 recon_error: 0.057 perplexity: 325.627 vqvae loss: 0.037
9600 train loss: 0.093123 recon_error: 0.056 perplexity: 327.352 vqvae loss: 0.037
9700 train loss: 0.092934 recon_error: 0.056 perplexity: 328.674 vqvae loss: 0.037
9800 train loss: 0.093284 recon_error: 0.056 perplexity: 329.437 vqvae loss: 0.037
9900 train loss: 0.094147 recon_error: 0.057 perplexity: 330.146 vqvae loss: 0.037
10000 train loss: 0.092876 recon_error: 0.056 perplexity: 326.349 vqvae loss: 0.037
CPU times: user 1h 47min 46s, sys: 14min 12s, total: 2h 1min 59s
Wall time: 4min 29s

 

損失をプロットする

f = plt.figure(figsize=(16,8))
ax = f.add_subplot(1,2,1)
ax.plot(train_recon_errors)
ax.set_yscale('log')
ax.set_title('NMSE.')

ax = f.add_subplot(1,2,2)
ax.plot(train_perplexities)
ax.set_title('Average codebook usage (perplexity).')
Text(0.5, 1.0, 'Average codebook usage (perplexity).')

 

再構築を見る

# Reconstructions
train_batch = next(iter(train_dataset))
valid_batch = next(iter(valid_dataset))

# Put data through the model with is_training=False, so that in the case of 
# using EMA the codebook is not updated.
train_reconstructions = model(train_batch['image'],
                              is_training=False)['x_recon'].numpy()
valid_reconstructions = model(valid_batch['image'],
                              is_training=False)['x_recon'].numpy()


def convert_batch_to_image_grid(image_batch):
  reshaped = (image_batch.reshape(4, 8, 32, 32, 3)
              .transpose(0, 2, 1, 3, 4)
              .reshape(4 * 32, 8 * 32, 3))
  return reshaped + 0.5



f = plt.figure(figsize=(16,8))
ax = f.add_subplot(2,2,1)
ax.imshow(convert_batch_to_image_grid(train_batch['image'].numpy()),
          interpolation='nearest')
ax.set_title('training data originals')
plt.axis('off')

ax = f.add_subplot(2,2,2)
ax.imshow(convert_batch_to_image_grid(train_reconstructions),
          interpolation='nearest')
ax.set_title('training data reconstructions')
plt.axis('off')

ax = f.add_subplot(2,2,3)
ax.imshow(convert_batch_to_image_grid(valid_batch['image'].numpy()),
          interpolation='nearest')
ax.set_title('validation data originals')
plt.axis('off')

ax = f.add_subplot(2,2,4)
ax.imshow(convert_batch_to_image_grid(valid_reconstructions),
          interpolation='nearest')
ax.set_title('validation data reconstructions')
plt.axis('off')
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
(-0.5, 255.5, 127.5, -0.5)

 

以上






クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年6月
月 火 水 木 金 土 日
1234567
891011121314
15161718192021
22232425262728
2930  
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme