Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

DGL 0.5 ユーザガイド : 5 章 訓練 : 5.3 リンク予測

Posted on 09/22/2020 by Sales Information

DGL 0.5ユーザガイド : 5 章 訓練 : 5.3 リンク予測 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 09/22/2020 (0.5.2)

* 本ページは、DGL の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • 5.3 Link Prediction

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

ユーザガイド : 5 章 訓練 : 5.3 リンク予測

幾つかの他の設定では 2 つの与えられたノードの間にエッジが存在するか否かを予測することを望むかもしれません。そのようなモデルはリンク予測モデルと呼称します。

 

概要

GNN ベースのリンク予測モデルは 2 つのノード $u$ と $v$ の間の接続性の尤度を (それらの多層 GNN から計算されたノード表現) \(\boldsymbol{h}_u^{(L)}\) と \(\boldsymbol{h}_v^{(L)}\) の関数として表します。

\[
y_{u,v} = \phi(\boldsymbol{h}_u^{(L)}, \boldsymbol{h}_v^{(L)})
\]

このセクションでは \(y_{u,v}\) ノード $u$ とノード $v$ の間のスコアを参照します。

リンク予測モデルを訓練することは、エッジにより接続されるノード間のスコアをノードの任意のペアの間のスコアに対して比較することを伴います。例えば、$u$ と $v$ に接続するエッジが与えられたとき、ノード $u$ と $v$ の間のスコアがノード $u$ と (任意のノイズ分布 \(v’ \sim P_n(v)\) から) サンプリングされたノード \(v’\) の間のスコアよりも高いことを促進します (= encourage)。そのような方法はネガティブ・サンプリングと呼ばれます。

最小化されたときに上の挙動を獲得できる多くの損失関数があります。完全ではないリストは以下を含みます :

  • 交差エントロピー損失: \(\mathcal{L} = – \log \sigma (y_{u,v}) – \sum_{v_i \sim P_n(v), i=1,\dots,k}\log \left[ 1 – \sigma (y_{u,v_i})\right]\)
  • BPR 損失: \(\mathcal{L} = \sum_{v_i \sim P_n(v), i=1,\dots,k} – \log \sigma (y_{u,v} – y_{u,v_i})\)
  • Margin 損失: \(\mathcal{L} = \sum_{v_i \sim P_n(v), i=1,\dots,k} \max(0, M – y_{u, v} + y_{u, v_i})\), ここで \(M\) は定数ハイパーパラメータ。

暗黙的フィードバック (= implicit feedback) や ノイズ-contrastive 推定 が何であるかを知っていれば、このアイデアに馴染みがあることを見出すかもしれません。

 

エッジ分類と異なるモデル実装の差異

$u$ と $v$ の間のスコアを計算するニューラルネットワーク・モデルは 上で 説明されたエッジ回帰モデルと同一です。

エッジ上のスコアを計算する dot 積を使用するサンプルがここにあります。

class DotProductPredictor(nn.Module):
    def forward(self, graph, h):
        # h contains the node representations computed from the GNN defined
        # in the node classification section (Section 5.1).
        with graph.local_scope():
            graph.ndata['h'] = h
            graph.apply_edges(fn.u_dot_v('h', 'h', 'score'))
            return graph.edata['score']

 

訓練ループ

スコア予測モデルはグラフ上で動作しますので、ネガティブ・サンプルをもう一つのグラフとして表現する必要があります。グラフはエッジとして総てのネガティブ・ノードペアを含みます。

次はネガティブ・サンプルをグラフとして表すサンプルを示します。各エッジ \((u,v)\) は $k$ ネガティブ・サンプル \((u,v_i)\) を得ます、そこでは \(v_i\) は一様分布からサンプリングされます。

def construct_negative_graph(graph, k):
    src, dst = graph.edges()

    neg_src = src.repeat_interleave(k)
    neg_dst = torch.randint(0, graph.number_of_nodes(), (len(src) * k,))
    return dgl.graph((neg_src, neg_dst), num_nodes=graph.number_of_nodes())

エッジ・スコアを予測するモデルはエッジ分類/回帰のそれと同じです。

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        self.sage = SAGE(in_features, hidden_features, out_features)
        self.pred = DotProductPredictor()
    def forward(self, g, neg_g, x):
        h = self.sage(g, x)
        return self.pred(g, h), self.pred(neg_g, h)

それから訓練ループはネガティブ・グラフを繰り返し構築して損失を計算します。

def compute_loss(pos_score, neg_score):
    # Margin loss
    n_edges = pos_score.shape[0]
    return (1 - neg_score.view(n_edges, -1) + pos_score.unsqueeze(1)).clamp(min=0).mean()

node_features = graph.ndata['feat']
n_features = node_features.shape[1]
k = 5
model = Model(n_features, 100, 100)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
    negative_graph = construct_negative_graph(graph, k)
    pos_score, neg_score = model(graph, negative_graph, node_features)
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    opt.step()
    print(loss.item())

訓練後、ノード表現は次を通して得られます :

node_embeddings = model.sage(graph, node_features)

ノード埋め込みを利用する複数の方法があります。サンプルは訓練ダウンストリーム分類器、あるいは適切な (= relevant) エンティティ・レコメンデーションのための最近傍探索や最大内積探索を行なうことを含みます。

 

異質グラフ

異質グラフ上のリンク予測は均質グラフ上のそれと大きくは違いません。以下は一つのエッジ型上で予測していることを仮定しますが、それを多重エッジ型に拡張することは容易です。

例えば、リンク予測のためのエッジ型のエッジのスコアを計算するために 上の HeteroDotProductPredictor を再利用できます。

class HeteroDotProductPredictor(nn.Module):
    def forward(self, graph, h, etype):
        # h contains the node representations for each node type computed from
        # the GNN defined in the previous section (Section 5.1).
        with graph.local_scope():
            graph.ndata['h'] = h
            graph.apply_edges(fn.u_dot_v('h', 'h', 'score'), etype=etype)
            return graph.edges[etype].data['score']

ネガティブ・サンプリングを遂行するために、(その上でリンク予測を遂行している) エッジ型のためのネガティブ・グラフを構築することができます。

def construct_negative_graph(graph, k, etype):
    utype, _, vtype = etype
    src, dst = graph.edges(etype=etype)
    neg_src = src.repeat_interleave(k)
    neg_dst = torch.randint(0, graph.number_of_nodes(vtype), (len(src) * k,))
    return dgl.heterograph(
        {etype: (neg_src, neg_dst)},
        num_nodes_dict={ntype: graph.number_of_nodes(ntype) for ntype in graph.ntypes})

モデルは異質グラフ上のエッジ分類のそれとは少し異なります、何故ならばリンク予測を遂行するところのエッジ型を指定する必要があるからです。

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, rel_names):
        super().__init__()
        self.sage = RGCN(in_features, hidden_features, out_features, rel_names)
        self.pred = HeteroDotProductPredictor()
    def forward(self, g, neg_g, x, etype):
        h = self.sage(g, x)
        return self.pred(g, h, etype), self.pred(neg_g, h, etype)

訓練ループは均質グラフのそれと同様です。

def compute_loss(pos_score, neg_score):
    # Margin loss
    n_edges = pos_score.shape[0]
    return (1 - neg_score.view(n_edges, -1) + pos_score.unsqueeze(1)).clamp(min=0).mean()

k = 5
model = Model(10, 20, 5, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
    negative_graph = construct_negative_graph(hetero_graph, k, ('user', 'click', 'item'))
    pos_score, neg_score = model(hetero_graph, negative_graph, node_features, ('user', 'click', 'item'))
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    opt.step()
    print(loss.item())
 

以上






クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年9月
月 火 水 木 金 土 日
 123456
78910111213
14151617181920
21222324252627
282930  
« 7月   10月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme