Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

HuggingFace Transformers 3.3 : 哲学

Posted on 10/16/2020 by Sales Information

HuggingFace Transformers 3.3 : 哲学 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 10/16/2020 (3.3.1)

* 本ページは、HuggingFace Transformers の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Philosophy

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

★ 無料セミナー開催中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

HuggingFace Transformers : 哲学

Transformers は以下のための意固地な (= opnionated) ライブラリです :

  • ラージスケール transformers モデルを利用/研究/拡張することを求める NLP 研究者と教育者
  • それらのモデルを再調整して and/or それらをプロダクションでサービス提供することを望むハンズオン実践者
  • 事前訓練モデルをダウンロードして与えられた NLP タスクを解くためにそれを利用することを単に望む技術者

ライブラリは 2 つの強力なゴールを念頭において設計されました :

  • できる限り容易に高速に利用できるものである :
    • 学習する user-facing 抽象の数を強く制限しました、実際殆ど抽象はなく、モデルを利用するために必要な単に 3 つの標準的なクラス : configuration, models と tokenizer があるだけです。
    • これらのクラス総ては共通の from_pretrained() インスタンス化メソッドを使用することで単純で統一された方法で事前訓練インスタンスから初期化できます、これは Hugging Face ハブ や貴方自身のセーブされたチェックポイント上で提供される事前訓練されたチェックポイントから、 (必要であれば) ダウンロードを処理し、関連するクラス・インスタンスと関連データ (configurations のハイパーパラメータ, tokenizers の語彙とモデルの重み) をキャッシングしてロードします。
    • それら 3 つの基底クラスの上に、ライブラリは 2 つの API を提供します : 与えられたタスク上でモデル (加えて関連する tokenizer と configuration) を素早く使用するための pipeline() そして与えられたモデルを素早く訓練または再調整するための Trainer() / TFTrainer() です。
    • 結果として、このライブラリはニューラルネットのためのビルディング・ブロックのモジュール・ツールボックスでは ありません。ライブラリを拡張 / (その上で) 構築することを望むのであれば、通常の Python/PyTorch/TensorFlow/Keras モジュールを単に利用してそしてモデルロード/セーブのような機能を再利用するためにはライブラリの基底クラスから継承してください。
  • 元のモデルにできる限り近いパフォーマンスを持つ最先端技術のモデルを提供する :
    • 各アーキテクチャ毎に少なくとも一つのサンプルを提供します、これはそのアーキテクチャの公式作者により提供された結果を再生成します。
    • コードは通常は元のコードベースに出来る限り近いです、これはある PyTorch コードは pytorchic ではないかもしれないことを意味します、何故ならばそれは変換された TensorFlow コードの結果そしてその逆である可能性があるからです。

2, 3 の他のゴール :

  • モデルの内部をできる限り一貫性を持って公開する :
    • 単一の API を使用して、full 隠れ状態と attention 重みへのアクセスを与えます。
    • tokenizer と基底モデルの API はモデル間で容易に切り替えられるように標準化されています。
  • これらのモデルを再調整/調査するために見込みのあるツールの主観的な選択を組み入れます :
    • 再調整のため語彙に新しいトークンと埋め込みを追加するための単純で/一貫した方法。
    • transformer ヘッドをマスクして刈り取る (= prune) 単純な方法。
  • PyTorch と TensorFlow 2.0 間を容易に切り替え、一つのフレームワークを使用して訓練して他方を使用して推論することを許容します。

 

主要コンセプト

ライブラリは各モデルに対して 3 つのタイプのクラス周りに構築されます :

  • BertModel のような Model クラス、これは 30+ PyTorch モデル (torch.nn.Module) や Keras モデル (tf.keras.Model) で、ライブラリで提供される事前訓練重みで動作します。
  • BertConfig のような Configuration クラス、これはモデルを構築するために必要なパラメータ総てをストアします。これらを貴方自身でインスタンス化する必要は常にはありません。特に、どのような変更もなしに事前訓練モデルを使用している場合、モデルの作成は configuration のインスタンス化を自動的に処理します (これはモデルの一部です)。
  • BertTokenizer のような Tokenizer クラス、これは各モデルのための語彙をストアして、モデルに供給されるトークン埋め込みインデックスのリスト内のエンコード/デコード文字列のためのメソッドを提供します。

これらのクラス総ては 2 つのメソッドを使用して pretrained インスタンスからインスタンス化できてローカルにセーブできます :

  • from_pretrained() は、ライブラリ自身から提供される (サポートされるモデルは ここ のリストで提供されます) かユーザによりローカルにストアされた事前訓練バージョンから model/configuration/tokenizer をインスタンス化させます。
  • save_pretrained() は model/configuration/tokenizer をローカルにセーブさせます、その結果それは from_pretrained() を使用して再ロードできます。
 

以上






クラスキャット

最近の投稿

  • LangGraph 0.5 : エージェント開発 : ワークフローとエージェント
  • LangGraph 0.5 : エージェント開発 : エージェントの実行
  • LangGraph 0.5 : エージェント開発 : prebuilt コンポーネントを使用したエージェント開発
  • LangGraph 0.5 : Get started : ローカルサーバの実行
  • LangGraph 0.5 on Colab : Get started : human-in-the-loop 制御の追加

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) LangGraph 0.5 (8) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年10月
月 火 水 木 金 土 日
 1234
567891011
12131415161718
19202122232425
262728293031  
« 9月   11月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme