Keras 2 : examples : Perceiver による画像分類 (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 12/06/2021 (keras 2.7.0)
* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:
- Code examples : Computer Vision : Image classification with Perceiver (Author: Khalid Salama)
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

-  人工知能研究開発支援
- 人工知能研修サービス(経営者層向けオンサイト研修)
- テクニカルコンサルティングサービス
- 実証実験(プロトタイプ構築)
- アプリケーションへの実装
 
-  人工知能研修サービス
 
-  PoC(概念実証)を失敗させないための支援
 
- テレワーク & オンライン授業を支援
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- ウェビナー運用には弊社製品「ClassCat® Webinar」を利用しています。
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
- 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
- E-Mail:sales-info@classcat.com ; WebSite: www.classcat.com ; Facebook
Keras 2 : examples : Perceiver による画像分類
Description: 画像分類のための Perceiver モデルを実装。
イントロダクション
このサンプルは画像分類のための the Perceiver: General Perception with Iterative Attention model by Andrew Jaegle et al. を実装してそれを CIFAR-100 上で実演します。
Perceiver モデルは、入力をタイトな潜在的ボトルネックに反復的に蒸留して、非常に大きな入力を処理するためにそれをスケールすることを可能にするため、非同期注意 (= asymmetric attention) メカニズムを活用しています。
換言すれば: 入力データ配列 (e.g. 画像) が M 要素 (i.e. パッチ) を持ち、ここで M は大きいとします。標準的な Transformer モデルでは、自己注意演算は M 要素に対して遂行されます。この演算の複雑さは O(M^2) です。けれども、Perceiver モデルはサイズ N 要素の潜在的な配列を作成します、ここで N << M です、そして 2 つの演算を反復的に実行します :
- 潜在的配列とデータ配列の間の交差注意 Transformer – この演算の複雑さは O(M.N) です。
- 潜在配列上の自己注意 Transformer – この演算の複雑さは O(N^2) です。
このサンプルは TensorFlow 2.4 またはそれ以上、そして TensorFlow Addons を必要とします、これは次のコマンドを使用してインストールできます :
pip install -U tensorflow-addons
セットアップ
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_addons as tfa
データの準備
num_classes = 100
input_shape = (32, 32, 3)
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()
print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")
x_train shape: (50000, 32, 32, 3) - y_train shape: (50000, 1) x_test shape: (10000, 32, 32, 3) - y_test shape: (10000, 1)
ハイパーパラメータの設定
learning_rate = 0.001
weight_decay = 0.0001
batch_size = 64
num_epochs = 50
dropout_rate = 0.2
image_size = 64  # We'll resize input images to this size.
patch_size = 2  # Size of the patches to be extract from the input images.
num_patches = (image_size // patch_size) ** 2  # Size of the data array.
latent_dim = 256  # Size of the latent array.
projection_dim = 256  # Embedding size of each element in the data and latent arrays.
num_heads = 8  # Number of Transformer heads.
ffn_units = [
    projection_dim,
    projection_dim,
]  # Size of the Transformer Feedforward network.
num_transformer_blocks = 4
num_iterations = 2  # Repetitions of the cross-attention and Transformer modules.
classifier_units = [
    projection_dim,
    num_classes,
]  # Size of the Feedforward network of the final classifier.
print(f"Image size: {image_size} X {image_size} = {image_size ** 2}")
print(f"Patch size: {patch_size} X {patch_size} = {patch_size ** 2} ")
print(f"Patches per image: {num_patches}")
print(f"Elements per patch (3 channels): {(patch_size ** 2) * 3}")
print(f"Latent array shape: {latent_dim} X {projection_dim}")
print(f"Data array shape: {num_patches} X {projection_dim}")
Image size: 64 X 64 = 4096 Patch size: 2 X 2 = 4 Patches per image: 1024 Elements per patch (3 channels): 12 Latent array shape: 256 X 256 Data array shape: 1024 X 256
各ピクセルをデータ配列の個々の入力として使用するためには、patch_size を 1 に設定することに注意してください。
データ増強の使用
data_augmentation = keras.Sequential(
    [
        layers.Normalization(),
        layers.Resizing(image_size, image_size),
        layers.RandomFlip("horizontal"),
        layers.RandomZoom(
            height_factor=0.2, width_factor=0.2
        ),
    ],
    name="data_augmentation",
)
# Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[0].adapt(x_train)
順電波ネットワーク (FFN) の実装
def create_ffn(hidden_units, dropout_rate):
    ffn_layers = []
    for units in hidden_units[:-1]:
        ffn_layers.append(layers.Dense(units, activation=tf.nn.gelu))
    ffn_layers.append(layers.Dense(units=hidden_units[-1]))
    ffn_layers.append(layers.Dropout(dropout_rate))
    ffn = keras.Sequential(ffn_layers)
    return ffn
パッチ作成を層として実装する
class Patches(layers.Layer):
    def __init__(self, patch_size):
        super(Patches, self).__init__()
        self.patch_size = patch_size
    def call(self, images):
        batch_size = tf.shape(images)[0]
        patches = tf.image.extract_patches(
            images=images,
            sizes=[1, self.patch_size, self.patch_size, 1],
            strides=[1, self.patch_size, self.patch_size, 1],
            rates=[1, 1, 1, 1],
            padding="VALID",
        )
        patch_dims = patches.shape[-1]
        patches = tf.reshape(patches, [batch_size, -1, patch_dims])
        return patches
パッチ・エンコーディング層の実装
PatchEncoder 層はパッチをそれをサイズ latent_dim のベクトルに投影することで線形に変換します。更に、投影されたベクトルに学習可能な位置埋め込みを追加します。
元の Perceiver 論文は Fourier 特徴位置エンコーディングを使用していることに注意してください。
class PatchEncoder(layers.Layer):
    def __init__(self, num_patches, projection_dim):
        super(PatchEncoder, self).__init__()
        self.num_patches = num_patches
        self.projection = layers.Dense(units=projection_dim)
        self.position_embedding = layers.Embedding(
            input_dim=num_patches, output_dim=projection_dim
        )
    def call(self, patches):
        positions = tf.range(start=0, limit=self.num_patches, delta=1)
        encoded = self.projection(patches) + self.position_embedding(positions)
        return encoded
Perceiver モデルを構築する
Perceiver は 2 つのモジュールから構成されます : 交差注意モジュールと自己注意を使用する標準的な Transformer です。
交差注意モジュール
交差注意は入力として (latent_dim, projection_dim) 潜在的配列と (data_dim, projection_dim) データ配列を想定し、出力として (data_dim, projection_dim) データ配列を生成します。交差注意を適用するため、query ベクトルが潜在的配列から生成される一方、キーと値ベクトルがエンコードされた画像から生成されます。
サンプルのデータ配列は画像であることに注意してください、そこでは data_dim は num_patches に設定されています。
def create_cross_attention_module(
    latent_dim, data_dim, projection_dim, ffn_units, dropout_rate
):
    inputs = {
        # Recieve the latent array as an input of shape [1, latent_dim, projection_dim].
        "latent_array": layers.Input(shape=(latent_dim, projection_dim)),
        # Recieve the data_array (encoded image) as an input of shape [batch_size, data_dim, projection_dim].
        "data_array": layers.Input(shape=(data_dim, projection_dim)),
    }
    # Apply layer norm to the inputs
    latent_array = layers.LayerNormalization(epsilon=1e-6)(inputs["latent_array"])
    data_array = layers.LayerNormalization(epsilon=1e-6)(inputs["data_array"])
    # Create query tensor: [1, latent_dim, projection_dim].
    query = layers.Dense(units=projection_dim)(latent_array)
    # Create key tensor: [batch_size, data_dim, projection_dim].
    key = layers.Dense(units=projection_dim)(data_array)
    # Create value tensor: [batch_size, data_dim, projection_dim].
    value = layers.Dense(units=projection_dim)(data_array)
    # Generate cross-attention outputs: [batch_size, latent_dim, projection_dim].
    attention_output = layers.Attention(use_scale=True, dropout=0.1)(
        [query, key, value], return_attention_scores=False
    )
    # Skip connection 1.
    attention_output = layers.Add()([attention_output, latent_array])
    # Apply layer norm.
    attention_output = layers.LayerNormalization(epsilon=1e-6)(attention_output)
    # Apply Feedforward network.
    ffn = create_ffn(hidden_units=ffn_units, dropout_rate=dropout_rate)
    outputs = ffn(attention_output)
    # Skip connection 2.
    outputs = layers.Add()([outputs, attention_output])
    # Create the Keras model.
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model
Transformer モジュール
Transformer は入力として交差注意モジュールからの出力潜在的ベクトルを想定し、その latent_dim 要素にマルチヘッド自己注意を適用し、前伝播ネットワークが続き、別の (latent_dim, projection_dim) 潜在的配列を生成します。
def create_transformer_module(
    latent_dim,
    projection_dim,
    num_heads,
    num_transformer_blocks,
    ffn_units,
    dropout_rate,
):
    # input_shape: [1, latent_dim, projection_dim]
    inputs = layers.Input(shape=(latent_dim, projection_dim))
    x0 = inputs
    # Create multiple layers of the Transformer block.
    for _ in range(num_transformer_blocks):
        # Apply layer normalization 1.
        x1 = layers.LayerNormalization(epsilon=1e-6)(x0)
        # Create a multi-head self-attention layer.
        attention_output = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=projection_dim, dropout=0.1
        )(x1, x1)
        # Skip connection 1.
        x2 = layers.Add()([attention_output, x0])
        # Apply layer normalization 2.
        x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
        # Apply Feedforward network.
        ffn = create_ffn(hidden_units=ffn_units, dropout_rate=dropout_rate)
        x3 = ffn(x3)
        # Skip connection 2.
        x0 = layers.Add()([x3, x2])
    # Create the Keras model.
    model = keras.Model(inputs=inputs, outputs=x0)
    return model
Perceiver モデル
Perceiver は、潜在的配列が必要に応じて入力画像から情報を反復的に抽出することを可能にするため、共有重みとスキップ接続を持ちながら — 交差注意と Transformer モジュールを num_iterations 回反復します。
class Perceiver(keras.Model):
    def __init__(
        self,
        patch_size,
        data_dim,
        latent_dim,
        projection_dim,
        num_heads,
        num_transformer_blocks,
        ffn_units,
        dropout_rate,
        num_iterations,
        classifier_units,
    ):
        super(Perceiver, self).__init__()
        self.latent_dim = latent_dim
        self.data_dim = data_dim
        self.patch_size = patch_size
        self.projection_dim = projection_dim
        self.num_heads = num_heads
        self.num_transformer_blocks = num_transformer_blocks
        self.ffn_units = ffn_units
        self.dropout_rate = dropout_rate
        self.num_iterations = num_iterations
        self.classifier_units = classifier_units
    def build(self, input_shape):
        # Create latent array.
        self.latent_array = self.add_weight(
            shape=(self.latent_dim, self.projection_dim),
            initializer="random_normal",
            trainable=True,
        )
        # Create patching module.
        self.patcher = Patches(self.patch_size)
        # Create patch encoder.
        self.patch_encoder = PatchEncoder(self.data_dim, self.projection_dim)
        # Create cross-attenion module.
        self.cross_attention = create_cross_attention_module(
            self.latent_dim,
            self.data_dim,
            self.projection_dim,
            self.ffn_units,
            self.dropout_rate,
        )
        # Create Transformer module.
        self.transformer = create_transformer_module(
            self.latent_dim,
            self.projection_dim,
            self.num_heads,
            self.num_transformer_blocks,
            self.ffn_units,
            self.dropout_rate,
        )
        # Create global average pooling layer.
        self.global_average_pooling = layers.GlobalAveragePooling1D()
        # Create a classification head.
        self.classification_head = create_ffn(
            hidden_units=self.classifier_units, dropout_rate=self.dropout_rate
        )
        super(Perceiver, self).build(input_shape)
    def call(self, inputs):
        # Augment data.
        augmented = data_augmentation(inputs)
        # Create patches.
        patches = self.patcher(augmented)
        # Encode patches.
        encoded_patches = self.patch_encoder(patches)
        # Prepare cross-attention inputs.
        cross_attention_inputs = {
            "latent_array": tf.expand_dims(self.latent_array, 0),
            "data_array": encoded_patches,
        }
        # Apply the cross-attention and the Transformer modules iteratively.
        for _ in range(self.num_iterations):
            # Apply cross-attention from the latent array to the data array.
            latent_array = self.cross_attention(cross_attention_inputs)
            # Apply self-attention Transformer to the latent array.
            latent_array = self.transformer(latent_array)
            # Set the latent array of the next iteration.
            cross_attention_inputs["latent_array"] = latent_array
        # Apply global average pooling to generate a [batch_size, projection_dim] repesentation tensor.
        representation = self.global_average_pooling(latent_array)
        # Generate logits.
        logits = self.classification_head(representation)
モデルをコンパイル、訓練そして評価する
def run_experiment(model):
    # Create LAMB optimizer with weight decay.
    optimizer = tfa.optimizers.LAMB(
        learning_rate=learning_rate, weight_decay_rate=weight_decay,
    )
    # Compile the model.
    model.compile(
        optimizer=optimizer,
        loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=[
            keras.metrics.SparseCategoricalAccuracy(name="acc"),
            keras.metrics.SparseTopKCategoricalAccuracy(5, name="top5-acc"),
        ],
    )
    # Create a learning rate scheduler callback.
    reduce_lr = keras.callbacks.ReduceLROnPlateau(
        monitor="val_loss", factor=0.2, patience=3
    )
    # Create an early stopping callback.
    early_stopping = tf.keras.callbacks.EarlyStopping(
        monitor="val_loss", patience=15, restore_best_weights=True
    )
    # Fit the model.
    history = model.fit(
        x=x_train,
        y=y_train,
        batch_size=batch_size,
        epochs=num_epochs,
        validation_split=0.1,
        callbacks=[early_stopping, reduce_lr],
    )
    _, accuracy, top_5_accuracy = model.evaluate(x_test, y_test)
    print(f"Test accuracy: {round(accuracy * 100, 2)}%")
    print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%")
    # Return history to plot learning curves.
    return history
V100 GPU 上で現在の設定による perceiver の訓練は 200 秒ほどかかることに注意してください。
perceiver_classifier = Perceiver(
    patch_size,
    num_patches,
    latent_dim,
    projection_dim,
    num_heads,
    num_transformer_blocks,
    ffn_units,
    dropout_rate,
    num_iterations,
    classifier_units,
)
history = run_experiment(perceiver_classifier)
Epoch 1/100 704/704 [==============================] - 305s 405ms/step - loss: 4.4550 - acc: 0.0389 - top5-acc: 0.1407 - val_loss: 4.0544 - val_acc: 0.0802 - val_top5-acc: 0.2516 Epoch 2/100 704/704 [==============================] - 284s 403ms/step - loss: 4.0639 - acc: 0.0889 - top5-acc: 0.2576 - val_loss: 3.7379 - val_acc: 0.1272 - val_top5-acc: 0.3556 Epoch 3/100 704/704 [==============================] - 283s 402ms/step - loss: 3.8400 - acc: 0.1226 - top5-acc: 0.3326 - val_loss: 3.4527 - val_acc: 0.1750 - val_top5-acc: 0.4350 Epoch 4/100 704/704 [==============================] - 283s 402ms/step - loss: 3.5917 - acc: 0.1657 - top5-acc: 0.4063 - val_loss: 3.2160 - val_acc: 0.2176 - val_top5-acc: 0.5048 Epoch 5/100 704/704 [==============================] - 283s 403ms/step - loss: 3.3820 - acc: 0.2082 - top5-acc: 0.4638 - val_loss: 2.9947 - val_acc: 0.2584 - val_top5-acc: 0.5732 Epoch 6/100 704/704 [==============================] - 284s 403ms/step - loss: 3.2487 - acc: 0.2338 - top5-acc: 0.4991 - val_loss: 2.9179 - val_acc: 0.2770 - val_top5-acc: 0.5744 Epoch 7/100 704/704 [==============================] - 283s 402ms/step - loss: 3.1228 - acc: 0.2605 - top5-acc: 0.5295 - val_loss: 2.7958 - val_acc: 0.2994 - val_top5-acc: 0.6100 Epoch 8/100 704/704 [==============================] - 283s 402ms/step - loss: 2.9989 - acc: 0.2862 - top5-acc: 0.5588 - val_loss: 2.7117 - val_acc: 0.3208 - val_top5-acc: 0.6340 Epoch 9/100 704/704 [==============================] - 283s 402ms/step - loss: 2.9294 - acc: 0.3018 - top5-acc: 0.5763 - val_loss: 2.5933 - val_acc: 0.3390 - val_top5-acc: 0.6636 Epoch 10/100 704/704 [==============================] - 283s 402ms/step - loss: 2.8687 - acc: 0.3139 - top5-acc: 0.5934 - val_loss: 2.5030 - val_acc: 0.3614 - val_top5-acc: 0.6764 Epoch 11/100 704/704 [==============================] - 283s 402ms/step - loss: 2.7771 - acc: 0.3341 - top5-acc: 0.6098 - val_loss: 2.4657 - val_acc: 0.3704 - val_top5-acc: 0.6928 Epoch 12/100 704/704 [==============================] - 283s 402ms/step - loss: 2.7306 - acc: 0.3436 - top5-acc: 0.6229 - val_loss: 2.4441 - val_acc: 0.3738 - val_top5-acc: 0.6878 Epoch 13/100 704/704 [==============================] - 283s 402ms/step - loss: 2.6863 - acc: 0.3546 - top5-acc: 0.6346 - val_loss: 2.3508 - val_acc: 0.3892 - val_top5-acc: 0.7050 Epoch 14/100 704/704 [==============================] - 283s 402ms/step - loss: 2.6107 - acc: 0.3708 - top5-acc: 0.6537 - val_loss: 2.3219 - val_acc: 0.3996 - val_top5-acc: 0.7108 Epoch 15/100 704/704 [==============================] - 283s 402ms/step - loss: 2.5559 - acc: 0.3836 - top5-acc: 0.6664 - val_loss: 2.2748 - val_acc: 0.4140 - val_top5-acc: 0.7242 Epoch 16/100 704/704 [==============================] - 283s 402ms/step - loss: 2.5016 - acc: 0.3942 - top5-acc: 0.6761 - val_loss: 2.2364 - val_acc: 0.4238 - val_top5-acc: 0.7264 Epoch 17/100 704/704 [==============================] - 283s 402ms/step - loss: 2.4554 - acc: 0.4056 - top5-acc: 0.6897 - val_loss: 2.1684 - val_acc: 0.4418 - val_top5-acc: 0.7452 Epoch 18/100 704/704 [==============================] - 283s 402ms/step - loss: 2.3926 - acc: 0.4209 - top5-acc: 0.7024 - val_loss: 2.1614 - val_acc: 0.4372 - val_top5-acc: 0.7428 Epoch 19/100 704/704 [==============================] - 283s 402ms/step - loss: 2.3617 - acc: 0.4264 - top5-acc: 0.7119 - val_loss: 2.1595 - val_acc: 0.4382 - val_top5-acc: 0.7408 Epoch 20/100 704/704 [==============================] - 283s 402ms/step - loss: 2.3355 - acc: 0.4324 - top5-acc: 0.7133 - val_loss: 2.1187 - val_acc: 0.4462 - val_top5-acc: 0.7490 Epoch 21/100 704/704 [==============================] - 283s 402ms/step - loss: 2.2571 - acc: 0.4512 - top5-acc: 0.7299 - val_loss: 2.1095 - val_acc: 0.4424 - val_top5-acc: 0.7534 Epoch 22/100 704/704 [==============================] - 283s 402ms/step - loss: 2.2374 - acc: 0.4559 - top5-acc: 0.7357 - val_loss: 2.0997 - val_acc: 0.4398 - val_top5-acc: 0.7554 Epoch 23/100 704/704 [==============================] - 283s 402ms/step - loss: 2.2108 - acc: 0.4628 - top5-acc: 0.7452 - val_loss: 2.0662 - val_acc: 0.4574 - val_top5-acc: 0.7598 Epoch 24/100 704/704 [==============================] - 283s 402ms/step - loss: 2.1628 - acc: 0.4728 - top5-acc: 0.7555 - val_loss: 2.0564 - val_acc: 0.4564 - val_top5-acc: 0.7584 Epoch 25/100 704/704 [==============================] - 283s 402ms/step - loss: 2.1169 - acc: 0.4834 - top5-acc: 0.7616 - val_loss: 2.0793 - val_acc: 0.4600 - val_top5-acc: 0.7538 Epoch 26/100 704/704 [==============================] - 283s 402ms/step - loss: 2.0938 - acc: 0.4867 - top5-acc: 0.7743 - val_loss: 2.0835 - val_acc: 0.4566 - val_top5-acc: 0.7506 Epoch 27/100 704/704 [==============================] - 283s 402ms/step - loss: 2.0479 - acc: 0.4993 - top5-acc: 0.7816 - val_loss: 2.0790 - val_acc: 0.4610 - val_top5-acc: 0.7556 Epoch 28/100 704/704 [==============================] - 283s 402ms/step - loss: 1.8480 - acc: 0.5493 - top5-acc: 0.8159 - val_loss: 1.8846 - val_acc: 0.5046 - val_top5-acc: 0.7890 Epoch 29/100 704/704 [==============================] - 283s 402ms/step - loss: 1.7532 - acc: 0.5731 - top5-acc: 0.8362 - val_loss: 1.8844 - val_acc: 0.5106 - val_top5-acc: 0.7976 Epoch 30/100 704/704 [==============================] - 283s 402ms/step - loss: 1.7113 - acc: 0.5827 - top5-acc: 0.8434 - val_loss: 1.8792 - val_acc: 0.5096 - val_top5-acc: 0.7928 Epoch 31/100 704/704 [==============================] - 283s 403ms/step - loss: 1.6831 - acc: 0.5891 - top5-acc: 0.8511 - val_loss: 1.8938 - val_acc: 0.5044 - val_top5-acc: 0.7914 Epoch 32/100 704/704 [==============================] - 284s 403ms/step - loss: 1.6480 - acc: 0.5977 - top5-acc: 0.8562 - val_loss: 1.9055 - val_acc: 0.5034 - val_top5-acc: 0.7922 Epoch 33/100 704/704 [==============================] - 284s 403ms/step - loss: 1.6320 - acc: 0.6015 - top5-acc: 0.8627 - val_loss: 1.9064 - val_acc: 0.5056 - val_top5-acc: 0.7896 Epoch 34/100 704/704 [==============================] - 283s 403ms/step - loss: 1.5821 - acc: 0.6145 - top5-acc: 0.8673 - val_loss: 1.8912 - val_acc: 0.5138 - val_top5-acc: 0.7936 Epoch 35/100 704/704 [==============================] - 283s 403ms/step - loss: 1.5791 - acc: 0.6163 - top5-acc: 0.8719 - val_loss: 1.8963 - val_acc: 0.5090 - val_top5-acc: 0.7982 Epoch 36/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5680 - acc: 0.6178 - top5-acc: 0.8741 - val_loss: 1.8998 - val_acc: 0.5142 - val_top5-acc: 0.7936 Epoch 37/100 704/704 [==============================] - 284s 403ms/step - loss: 1.5506 - acc: 0.6218 - top5-acc: 0.8743 - val_loss: 1.8941 - val_acc: 0.5142 - val_top5-acc: 0.7952 Epoch 38/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5611 - acc: 0.6216 - top5-acc: 0.8722 - val_loss: 1.8946 - val_acc: 0.5183 - val_top5-acc: 0.7956 Epoch 39/100 704/704 [==============================] - 284s 403ms/step - loss: 1.5541 - acc: 0.6215 - top5-acc: 0.8764 - val_loss: 1.8923 - val_acc: 0.5180 - val_top5-acc: 0.7962 Epoch 40/100 704/704 [==============================] - 283s 403ms/step - loss: 1.5505 - acc: 0.6228 - top5-acc: 0.8773 - val_loss: 1.8934 - val_acc: 0.5232 - val_top5-acc: 0.7962 Epoch 41/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5604 - acc: 0.6224 - top5-acc: 0.8747 - val_loss: 1.8938 - val_acc: 0.5230 - val_top5-acc: 0.7958 Epoch 42/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5545 - acc: 0.6194 - top5-acc: 0.8784 - val_loss: 1.8938 - val_acc: 0.5240 - val_top5-acc: 0.7966 Epoch 43/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5630 - acc: 0.6210 - top5-acc: 0.8758 - val_loss: 1.8939 - val_acc: 0.5240 - val_top5-acc: 0.7958 Epoch 44/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5569 - acc: 0.6198 - top5-acc: 0.8756 - val_loss: 1.8938 - val_acc: 0.5240 - val_top5-acc: 0.7060 Epoch 45/100 704/704 [==============================] - 283s 402ms/step - loss: 1.5569 - acc: 0.6197 - top5-acc: 0.8770 - val_loss: 1.8940 - val_acc: 0.5140 - val_top5-acc: 0.7962 313/313 [==============================] - 22s 69ms/step - loss: 1.8630 - acc: 0.5264 - top5-acc: 0.8087 Test accuracy: 52.64% Test top 5 accuracy: 80.87%
45 エポック後、Perceiver モデルはテストデータで約 53% 精度と 81% top-5 精度を達成します。
Perceiver 論文の ablations で述べられているように、潜在的配列サイズを増やし、潜在的配列とデータ配列要素の (投影) 次元を増やし、Transformer モジュールのブロック数を増やし、そして交差注意と潜在的 Transformer モジュールを適用する反復数を増やすことによりより良い結果が得られます。また入力画像のサイズを大きくしたり異なるパッチサイズを使用することを試しても良いでしょう。
Perceiver はモデルサイズを増やすことからメリットが得られます。けれども、より大きなモデルは効率的に fit in して訓練するにはより大きなアクセラレータが必要です。This is why in the Perceiver paper they used 32 TPU cores to run the experiments.
以上