Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 自然言語処理 – BERT による Masked 言語モデリング

Posted on 05/27/202205/27/2022 by Sales Information

Keras 2 : examples : NLP – BERT による Masked 言語モデリング (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 05/27/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Natural Language Processing : End-to-end Masked Language Modeling with BERT (Author: Ankur Singh)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

Keras 2 : examples : 自然言語処理 – BERT による Masked 言語モデリング

Description : BERT で Masked 言語モデル (MLM) を実装してそれを IMDB レビュー・データセットで再調整します。

 

イントロダクション

Masked 言語モデリングは空所を埋める (= fill-in-the-blank) タスクで、そこではモデルは、マスクされた単語が何であるはずかの予測を試みるためにマスク・トークンの周りのコンテキスト単語を使用します。

1 つまたはそれ以上のマスク・トークンを含む入力に対して、モデルは各々に対して最も尤度の高い置き換えを生成します。

例 :

  • 入力 : “I have watched this [MASK] and it was awesome.”

  • 出力 : “I have watched this movie and it was awesome.”

Masked 言語モデリング は (人手によりアノテートされたラベルなしの) 自己教師あり設定で言語モデルを訓練できる素晴らしい手法です。そしてそのようなモデルは様々な教師あり NLP タスクを成就するために最調整できます

BERT Transformer-Encoder ネットワーク・アーキテクチャを作成するために Keras TextVectorization と MultiHeadAttention 層を使用します。

 

セットアップ

“pip install tf-nightly” で tf-nightly をインストールします。

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers import TextVectorization
from dataclasses import dataclass
import pandas as pd
import numpy as np
import glob
import re
from pprint import pprint

 

Configuration のセットアップ

@dataclass
class Config:
    MAX_LEN = 256
    BATCH_SIZE = 32
    LR = 0.001
    VOCAB_SIZE = 30000
    EMBED_DIM = 128
    NUM_HEAD = 8  # used in bert model
    FF_DIM = 128  # used in bert model
    NUM_LAYERS = 1


config = Config()

 

データのロード

IMDB データを最初にダウンロードして Pandas dataframe 内にロードします。

!curl -O https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xf aclImdb_v1.tar.gz
def get_text_list_from_files(files):
    text_list = []
    for name in files:
        with open(name) as f:
            for line in f:
                text_list.append(line)
    return text_list


def get_data_from_text_files(folder_name):

    pos_files = glob.glob("aclImdb/" + folder_name + "/pos/*.txt")
    pos_texts = get_text_list_from_files(pos_files)
    neg_files = glob.glob("aclImdb/" + folder_name + "/neg/*.txt")
    neg_texts = get_text_list_from_files(neg_files)
    df = pd.DataFrame(
        {
            "review": pos_texts + neg_texts,
            "sentiment": [0] * len(pos_texts) + [1] * len(neg_texts),
        }
    )
    df = df.sample(len(df)).reset_index(drop=True)
    return df


train_df = get_data_from_text_files("train")
test_df = get_data_from_text_files("test")

all_data = train_df.append(test_df)
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 80.2M  100 80.2M    0     0  45.3M      0  0:00:01  0:00:01 --:--:-- 45.3M

 

データセットの準備

テキストを整数トークン id にベクトル化するために TextVectorization 層を使用します。それは文字列のバッチをトークンインデックスのシークエンス (1 つの例 = 整数トークンインデックスの順序付けられた 1D 配列) か密表現 (1 つの例 = トークンの非順序セットをエンコードした float 値の 1D 配列) に変換します。

以下で、3 つの前処理関数を定義します。

  1. get_vectorize_layer 関数は TextVectorization 層を構築します。

  2. encode 関数は raw テキストを整数トークン id にエンコードします。

  3. get_masked_input_and_labels 関数は入力トークン id をマスクします。それは各シークエンスの総ての入力トークンの 15% をランダムにマスクします。
def custom_standardization(input_data):
    lowercase = tf.strings.lower(input_data)
    stripped_html = tf.strings.regex_replace(lowercase, "
", " ") return tf.strings.regex_replace( stripped_html, "[%s]" % re.escape("!#$%&'()*+,-./:;<=>?@\^_`{|}~"), "" ) def get_vectorize_layer(texts, vocab_size, max_seq, special_tokens=["[MASK]"]): """Build Text vectorization layer Args: texts (list): List of string i.e input texts vocab_size (int): vocab size max_seq (int): Maximum sequence lenght. special_tokens (list, optional): List of special tokens. Defaults to ['[MASK]']. Returns: layers.Layer: Return TextVectorization Keras Layer """ vectorize_layer = TextVectorization( max_tokens=vocab_size, output_mode="int", standardize=custom_standardization, output_sequence_length=max_seq, ) vectorize_layer.adapt(texts) # Insert mask token in vocabulary vocab = vectorize_layer.get_vocabulary() vocab = vocab[2 : vocab_size - len(special_tokens)] + ["[mask]"] vectorize_layer.set_vocabulary(vocab) return vectorize_layer vectorize_layer = get_vectorize_layer( all_data.review.values.tolist(), config.VOCAB_SIZE, config.MAX_LEN, special_tokens=["[mask]"], ) # Get mask token id for masked language model mask_token_id = vectorize_layer(["[mask]"]).numpy()[0][0] def encode(texts): encoded_texts = vectorize_layer(texts) return encoded_texts.numpy() def get_masked_input_and_labels(encoded_texts): # 15% BERT masking inp_mask = np.random.rand(*encoded_texts.shape) < 0.15 # Do not mask special tokens inp_mask[encoded_texts <= 2] = False # Set targets to -1 by default, it means ignore labels = -1 * np.ones(encoded_texts.shape, dtype=int) # Set labels for masked tokens labels[inp_mask] = encoded_texts[inp_mask] # Prepare input encoded_texts_masked = np.copy(encoded_texts) # Set input to [MASK] which is the last token for the 90% of tokens # This means leaving 10% unchanged inp_mask_2mask = inp_mask & (np.random.rand(*encoded_texts.shape) < 0.90) encoded_texts_masked[ inp_mask_2mask ] = mask_token_id # mask token is the last in the dict # Set 10% to a random token inp_mask_2random = inp_mask_2mask & (np.random.rand(*encoded_texts.shape) < 1 / 9) encoded_texts_masked[inp_mask_2random] = np.random.randint( 3, mask_token_id, inp_mask_2random.sum() ) # Prepare sample_weights to pass to .fit() method sample_weights = np.ones(labels.shape) sample_weights[labels == -1] = 0 # y_labels would be same as encoded_texts i.e input tokens y_labels = np.copy(encoded_texts) return encoded_texts_masked, y_labels, sample_weights # We have 25000 examples for training x_train = encode(train_df.review.values) # encode reviews with vectorizer y_train = train_df.sentiment.values train_classifier_ds = ( tf.data.Dataset.from_tensor_slices((x_train, y_train)) .shuffle(1000) .batch(config.BATCH_SIZE) ) # We have 25000 examples for testing x_test = encode(test_df.review.values) y_test = test_df.sentiment.values test_classifier_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch( config.BATCH_SIZE ) # Build dataset for end to end model input (will be used at the end) test_raw_classifier_ds = tf.data.Dataset.from_tensor_slices( (test_df.review.values, y_test) ).batch(config.BATCH_SIZE) # Prepare data for masked language model x_all_review = encode(all_data.review.values) x_masked_train, y_masked_labels, sample_weights = get_masked_input_and_labels( x_all_review ) mlm_ds = tf.data.Dataset.from_tensor_slices( (x_masked_train, y_masked_labels, sample_weights) ) mlm_ds = mlm_ds.shuffle(1000).batch(config.BATCH_SIZE)

 

Masked 言語モデリングのための BRRT モデルの作成 (モデルの事前訓練)

MultiHeadAttention 層を使用して BERT-like な事前訓練モデルを作成します。それは入力として (マスクされたトークンを含む) トークン id を取り、マスクされた入力トークンに対して正しい id を予測します。

def bert_module(query, key, value, i):
    # Multi headed self-attention
    attention_output = layers.MultiHeadAttention(
        num_heads=config.NUM_HEAD,
        key_dim=config.EMBED_DIM // config.NUM_HEAD,
        name="encoder_{}/multiheadattention".format(i),
    )(query, key, value)
    attention_output = layers.Dropout(0.1, name="encoder_{}/att_dropout".format(i))(
        attention_output
    )
    attention_output = layers.LayerNormalization(
        epsilon=1e-6, name="encoder_{}/att_layernormalization".format(i)
    )(query + attention_output)

    # Feed-forward layer
    ffn = keras.Sequential(
        [
            layers.Dense(config.FF_DIM, activation="relu"),
            layers.Dense(config.EMBED_DIM),
        ],
        name="encoder_{}/ffn".format(i),
    )
    ffn_output = ffn(attention_output)
    ffn_output = layers.Dropout(0.1, name="encoder_{}/ffn_dropout".format(i))(
        ffn_output
    )
    sequence_output = layers.LayerNormalization(
        epsilon=1e-6, name="encoder_{}/ffn_layernormalization".format(i)
    )(attention_output + ffn_output)
    return sequence_output


def get_pos_encoding_matrix(max_len, d_emb):
    pos_enc = np.array(
        [
            [pos / np.power(10000, 2 * (j // 2) / d_emb) for j in range(d_emb)]
            if pos != 0
            else np.zeros(d_emb)
            for pos in range(max_len)
        ]
    )
    pos_enc[1:, 0::2] = np.sin(pos_enc[1:, 0::2])  # dim 2i
    pos_enc[1:, 1::2] = np.cos(pos_enc[1:, 1::2])  # dim 2i+1
    return pos_enc


loss_fn = keras.losses.SparseCategoricalCrossentropy(
    reduction=tf.keras.losses.Reduction.NONE
)
loss_tracker = tf.keras.metrics.Mean(name="loss")


class MaskedLanguageModel(tf.keras.Model):
    def train_step(self, inputs):
        if len(inputs) == 3:
            features, labels, sample_weight = inputs
        else:
            features, labels = inputs
            sample_weight = None

        with tf.GradientTape() as tape:
            predictions = self(features, training=True)
            loss = loss_fn(labels, predictions, sample_weight=sample_weight)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)

        # Update weights
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))

        # Compute our own metrics
        loss_tracker.update_state(loss, sample_weight=sample_weight)

        # Return a dict mapping metric names to current value
        return {"loss": loss_tracker.result()}

    @property
    def metrics(self):
        # We list our `Metric` objects here so that `reset_states()` can be
        # called automatically at the start of each epoch
        # or at the start of `evaluate()`.
        # If you don't implement this property, you have to call
        # `reset_states()` yourself at the time of your choosing.
        return [loss_tracker]


def create_masked_language_bert_model():
    inputs = layers.Input((config.MAX_LEN,), dtype=tf.int64)

    word_embeddings = layers.Embedding(
        config.VOCAB_SIZE, config.EMBED_DIM, name="word_embedding"
    )(inputs)
    position_embeddings = layers.Embedding(
        input_dim=config.MAX_LEN,
        output_dim=config.EMBED_DIM,
        weights=[get_pos_encoding_matrix(config.MAX_LEN, config.EMBED_DIM)],
        name="position_embedding",
    )(tf.range(start=0, limit=config.MAX_LEN, delta=1))
    embeddings = word_embeddings + position_embeddings

    encoder_output = embeddings
    for i in range(config.NUM_LAYERS):
        encoder_output = bert_module(encoder_output, encoder_output, encoder_output, i)

    mlm_output = layers.Dense(config.VOCAB_SIZE, name="mlm_cls", activation="softmax")(
        encoder_output
    )
    mlm_model = MaskedLanguageModel(inputs, mlm_output, name="masked_bert_model")

    optimizer = keras.optimizers.Adam(learning_rate=config.LR)
    mlm_model.compile(optimizer=optimizer)
    return mlm_model


id2token = dict(enumerate(vectorize_layer.get_vocabulary()))
token2id = {y: x for x, y in id2token.items()}


class MaskedTextGenerator(keras.callbacks.Callback):
    def __init__(self, sample_tokens, top_k=5):
        self.sample_tokens = sample_tokens
        self.k = top_k

    def decode(self, tokens):
        return " ".join([id2token[t] for t in tokens if t != 0])

    def convert_ids_to_tokens(self, id):
        return id2token[id]

    def on_epoch_end(self, epoch, logs=None):
        prediction = self.model.predict(self.sample_tokens)

        masked_index = np.where(self.sample_tokens == mask_token_id)
        masked_index = masked_index[1]
        mask_prediction = prediction[0][masked_index]

        top_indices = mask_prediction[0].argsort()[-self.k :][::-1]
        values = mask_prediction[0][top_indices]

        for i in range(len(top_indices)):
            p = top_indices[i]
            v = values[i]
            tokens = np.copy(sample_tokens[0])
            tokens[masked_index[0]] = p
            result = {
                "input_text": self.decode(sample_tokens[0].numpy()),
                "prediction": self.decode(tokens),
                "probability": v,
                "predicted mask token": self.convert_ids_to_tokens(p),
            }
            pprint(result)


sample_tokens = vectorize_layer(["I have watched this [mask] and it was awesome"])
generator_callback = MaskedTextGenerator(sample_tokens.numpy())

bert_masked_model = create_masked_language_bert_model()
bert_masked_model.summary()
Model: "masked_bert_model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 256)]        0                                            
__________________________________________________________________________________________________
word_embedding (Embedding)      (None, 256, 128)     3840000     input_1[0][0]                    
__________________________________________________________________________________________________
tf.__operators__.add (TFOpLambd (None, 256, 128)     0           word_embedding[0][0]             
__________________________________________________________________________________________________
encoder_0/multiheadattention (M (None, 256, 128)     66048       tf.__operators__.add[0][0]       
                                                                 tf.__operators__.add[0][0]       
                                                                 tf.__operators__.add[0][0]       
__________________________________________________________________________________________________
encoder_0/att_dropout (Dropout) (None, 256, 128)     0           encoder_0/multiheadattention[0][0
__________________________________________________________________________________________________
tf.__operators__.add_1 (TFOpLam (None, 256, 128)     0           tf.__operators__.add[0][0]       
                                                                 encoder_0/att_dropout[0][0]      
__________________________________________________________________________________________________
encoder_0/att_layernormalizatio (None, 256, 128)     256         tf.__operators__.add_1[0][0]     
__________________________________________________________________________________________________
encoder_0/ffn (Sequential)      (None, 256, 128)     33024       encoder_0/att_layernormalization[
__________________________________________________________________________________________________
encoder_0/ffn_dropout (Dropout) (None, 256, 128)     0           encoder_0/ffn[0][0]              
__________________________________________________________________________________________________
tf.__operators__.add_2 (TFOpLam (None, 256, 128)     0           encoder_0/att_layernormalization[
                                                                 encoder_0/ffn_dropout[0][0]      
__________________________________________________________________________________________________
encoder_0/ffn_layernormalizatio (None, 256, 128)     256         tf.__operators__.add_2[0][0]     
__________________________________________________________________________________________________
mlm_cls (Dense)                 (None, 256, 30000)   3870000     encoder_0/ffn_layernormalization[
==================================================================================================
Total params: 7,809,584
Trainable params: 7,809,584
Non-trainable params: 0
_____________________________

 

訓練とセーブ

bert_masked_model.fit(mlm_ds, epochs=5, callbacks=[generator_callback])
bert_masked_model.save("bert_mlm_imdb.h5")
Epoch 1/5
1563/1563 [==============================] - ETA: 0s - loss: 7.0111{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'this',
 'prediction': 'i have watched this this and it was awesome',
 'probability': 0.086307295}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'i',
 'prediction': 'i have watched this i and it was awesome',
 'probability': 0.066265985}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'movie',
 'prediction': 'i have watched this movie and it was awesome',
 'probability': 0.044195656}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'a',
 'prediction': 'i have watched this a and it was awesome',
 'probability': 0.04020928}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'was',
 'prediction': 'i have watched this was and it was awesome',
 'probability': 0.027878676}
1563/1563 [==============================] - 661s 423ms/step - loss: 7.0111
Epoch 2/5
1563/1563 [==============================] - ETA: 0s - loss: 6.4498{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'movie',
 'prediction': 'i have watched this movie and it was awesome',
 'probability': 0.44448906}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'film',
 'prediction': 'i have watched this film and it was awesome',
 'probability': 0.1507494}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'is',
 'prediction': 'i have watched this is and it was awesome',
 'probability': 0.06385628}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'one',
 'prediction': 'i have watched this one and it was awesome',
 'probability': 0.023549262}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'was',
 'prediction': 'i have watched this was and it was awesome',
 'probability': 0.022277055}
1563/1563 [==============================] - 660s 422ms/step - loss: 6.4498
Epoch 3/5
1563/1563 [==============================] - ETA: 0s - loss: 5.8709{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'movie',
 'prediction': 'i have watched this movie and it was awesome',
 'probability': 0.4759983}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'film',
 'prediction': 'i have watched this film and it was awesome',
 'probability': 0.18642229}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'one',
 'prediction': 'i have watched this one and it was awesome',
 'probability': 0.045611132}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'is',
 'prediction': 'i have watched this is and it was awesome',
 'probability': 0.028308254}
{'input_text': 'i have watched this [mask] and it was awesome',
 'predicted mask token': 'series',
 'prediction': 'i have watched this series and it was awesome',
 'probability': 0.027862877}
1563/1563 [==============================] - 661s 423ms/step - loss: 5.8709
Epoch 4/5
 771/1563 [=============>................] - ETA: 5:35 - loss: 5.3782

 

センチメント分類モデルの最調整

自己教師ありモデルをセンチメント分類の下流タスクで最調整します。これを行うため、事前訓練済みの BERT 特徴の上にプーリング層と Dense 層を追加して分類器を作成しましょう。

# Load pretrained bert model
mlm_model = keras.models.load_model(
    "bert_mlm_imdb.h5", custom_objects={"MaskedLanguageModel": MaskedLanguageModel}
)
pretrained_bert_model = tf.keras.Model(
    mlm_model.input, mlm_model.get_layer("encoder_0/ffn_layernormalization").output
)

# Freeze it
pretrained_bert_model.trainable = False


def create_classifier_bert_model():
    inputs = layers.Input((config.MAX_LEN,), dtype=tf.int64)
    sequence_output = pretrained_bert_model(inputs)
    pooled_output = layers.GlobalMaxPooling1D()(sequence_output)
    hidden_layer = layers.Dense(64, activation="relu")(pooled_output)
    outputs = layers.Dense(1, activation="sigmoid")(hidden_layer)
    classifer_model = keras.Model(inputs, outputs, name="classification")
    optimizer = keras.optimizers.Adam()
    classifer_model.compile(
        optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]
    )
    return classifer_model


classifer_model = create_classifier_bert_model()
classifer_model.summary()

# Train the classifier with frozen BERT stage
classifer_model.fit(
    train_classifier_ds,
    epochs=5,
    validation_data=test_classifier_ds,
)

# Unfreeze the BERT model for fine-tuning
pretrained_bert_model.trainable = True
optimizer = keras.optimizers.Adam()
classifer_model.compile(
    optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]
)
classifer_model.fit(
    train_classifier_ds,
    epochs=5,
    validation_data=test_classifier_ds,
)
Model: "classification"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         [(None, 256)]             0         
_________________________________________________________________
model (Functional)           (None, 256, 128)          3939584   
_________________________________________________________________
global_max_pooling1d (Global (None, 128)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 64)                8256      
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 65        
=================================================================
Total params: 3,947,905
Trainable params: 8,321
Non-trainable params: 3,939,584
_________________________________________________________________
Epoch 1/5
782/782 [==============================] - 15s 19ms/step - loss: 0.8096 - accuracy: 0.5498 - val_loss: 0.6406 - val_accuracy: 0.6329
Epoch 2/5
782/782 [==============================] - 14s 18ms/step - loss: 0.6551 - accuracy: 0.6220 - val_loss: 0.6423 - val_accuracy: 0.6338
Epoch 3/5
782/782 [==============================] - 14s 18ms/step - loss: 0.6473 - accuracy: 0.6310 - val_loss: 0.6380 - val_accuracy: 0.6350
Epoch 4/5
782/782 [==============================] - 14s 18ms/step - loss: 0.6307 - accuracy: 0.6471 - val_loss: 0.6432 - val_accuracy: 0.6312
Epoch 5/5
782/782 [==============================] - 14s 18ms/step - loss: 0.6278 - accuracy: 0.6465 - val_loss: 0.6107 - val_accuracy: 0.6678
Epoch 1/5
782/782 [==============================] - 46s 59ms/step - loss: 0.5234 - accuracy: 0.7373 - val_loss: 0.3533 - val_accuracy: 0.8427
Epoch 2/5
782/782 [==============================] - 45s 57ms/step - loss: 0.2808 - accuracy: 0.8814 - val_loss: 0.3252 - val_accuracy: 0.8633
Epoch 3/5
782/782 [==============================] - 43s 55ms/step - loss: 0.1493 - accuracy: 0.9413 - val_loss: 0.4374 - val_accuracy: 0.8486
Epoch 4/5
782/782 [==============================] - 43s 55ms/step - loss: 0.0600 - accuracy: 0.9803 - val_loss: 0.6422 - val_accuracy: 0.8380
Epoch 5/5
782/782 [==============================] - 43s 55ms/step - loss: 0.0305 - accuracy: 0.9893 - val_loss: 0.6064 - val_accuracy: 0.8440

<tensorflow.python.keras.callbacks.History at 0x7f35af4367f0>

 

end-to-end モデルの作成とその評価

モデルを配備することを望むとき、プロダクション環境で前処理ロジックを再実装する必要がないように、それが既に前処理パイプラインを含めば最善です。TextVectorization 層を組込んだ end-to-end モデルを作成して、評価しましょう。モデルは入力として raw 文字列を受け取ります。

def get_end_to_end(model):
    inputs_string = keras.Input(shape=(1,), dtype="string")
    indices = vectorize_layer(inputs_string)
    outputs = model(indices)
    end_to_end_model = keras.Model(inputs_string, outputs, name="end_to_end_model")
    optimizer = keras.optimizers.Adam(learning_rate=config.LR)
    end_to_end_model.compile(
        optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]
    )
    return end_to_end_model


end_to_end_classification_model = get_end_to_end(classifer_model)
end_to_end_classification_model.evaluate(test_raw_classifier_ds)
782/782 [==============================] - 8s 11ms/step - loss: 0.5967 - accuracy: 0.8446

[0.6064175963401794, 0.8439599871635437]

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント
  • LangGraph : Prebuilt エージェント : メモリ

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (19) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年5月
月 火 水 木 金 土 日
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
« 3月   6月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme