Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 自然言語処理 – Transformers による固有表現認識

Posted on 05/30/202205/31/2022 by Sales Information

Keras 2 : examples : NLP – Transformers による固有表現認識 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 05/30/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Natural Language Processing : Named Entity Recognition using Transformers (Author: Varun Singh)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

Keras 2 : examples : 自然言語処理 – Transformers による固有表現認識

Description : Transformers と CoNLL 2003 共有タスクからのデータを使用した NER。

 

イントロダクション

固有表現認識 (NER) はテキストの固有表現を識別するプロセスです。固有表現の例は : “Person”, “Location”, “Organization”, “Dates” 等です。NER は本質的にはトークン分類タスクで、総てのトークンは一つまたはそれ以上の事前定義されたカテゴリーに分類されます。

この課題では、NER を遂行するために単純な Transformer ベースのモデルを訓練します。CoNLL 2003 共有タスクからのデータを使用していきます。データセットの詳細は、データセット web サイト にアクセスしてください。しかしながら、このデータの取得はフリーライセンスを得る追加のステップを必要としますので、HuggingFace のデータセット・ライブラリを使用していきます、これはこのデータセットの加工バージョンを含みます。

 

HuggingFace のオープンソース・データセット・ライブラリのインストール

また NER モデルを評価するために使用されるスクリプトもダウンロードします。

!pip3 install datasets
!wget https://raw.githubusercontent.com/sighsmile/conlleval/master/conlleval.py
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from datasets import load_dataset
from collections import Counter
from conlleval import evaluate

この素晴らしい サンプル からの transformer 実装を使用しています。

TransformerBlock 層の定義から始めましょう :

class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super(TransformerBlock, self).__init__()
        self.att = keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.ffn = keras.Sequential(
            [
                keras.layers.Dense(ff_dim, activation="relu"),
                keras.layers.Dense(embed_dim),
            ]
        )
        self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = keras.layers.Dropout(rate)
        self.dropout2 = keras.layers.Dropout(rate)

    def call(self, inputs, training=False):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)

次に、TokenAndPositionEmbedding 層を定義しましょう :

class TokenAndPositionEmbedding(layers.Layer):
    def __init__(self, maxlen, vocab_size, embed_dim):
        super(TokenAndPositionEmbedding, self).__init__()
        self.token_emb = keras.layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.pos_emb = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

    def call(self, inputs):
        maxlen = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=maxlen, delta=1)
        position_embeddings = self.pos_emb(positions)
        token_embeddings = self.token_emb(inputs)
        return token_embeddings + position_embeddings

 

keras.Model サブクラスとして NER モデルクラスを構築する

class NERModel(keras.Model):
    def __init__(
        self, num_tags, vocab_size, maxlen=128, embed_dim=32, num_heads=2, ff_dim=32
    ):
        super(NERModel, self).__init__()
        self.embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
        self.transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
        self.dropout1 = layers.Dropout(0.1)
        self.ff = layers.Dense(ff_dim, activation="relu")
        self.dropout2 = layers.Dropout(0.1)
        self.ff_final = layers.Dense(num_tags, activation="softmax")

    def call(self, inputs, training=False):
        x = self.embedding_layer(inputs)
        x = self.transformer_block(x)
        x = self.dropout1(x, training=training)
        x = self.ff(x)
        x = self.dropout2(x, training=training)
        x = self.ff_final(x)
        return x

 

データセット・ライブラリから CoNLL 2003 データセットをロードして加工する

conll_data = load_dataset("conll2003")

このデータをタブ区切りファイル形式にエクスポートします、これは tf.data.Dataset オブジェクトとして容易に読めます。

def export_to_file(export_file_path, data):
    with open(export_file_path, "w") as f:
        for record in data:
            ner_tags = record["ner_tags"]
            tokens = record["tokens"]
            if len(tokens) > 0:
                f.write(
                    str(len(tokens))
                    + "\t"
                    + "\t".join(tokens)
                    + "\t"
                    + "\t".join(map(str, ner_tags))
                    + "\n"
                )


os.mkdir("data")
export_to_file("./data/conll_train.txt", conll_data["train"])
export_to_file("./data/conll_val.txt", conll_data["validation"])

 

NER ラベル検索テーブルの作成

NER ラベルは通常は IOB, IOB2 or IOBES 形式で提供されます。詳細はこのリンクを確認してください : Wikipedia

0 はパデングのために予約されますので、ラベルの番号付けは 1 から始まることに注意してください。全部で 10 個のラベルを持ちます : NER データセットから 9 つ、パディングのために 1 つです。

def make_tag_lookup_table():
    iob_labels = ["B", "I"]
    ner_labels = ["PER", "ORG", "LOC", "MISC"]
    all_labels = [(label1, label2) for label2 in ner_labels for label1 in iob_labels]
    all_labels = ["-".join([a, b]) for a, b in all_labels]
    all_labels = ["[PAD]", "O"] + all_labels
    return dict(zip(range(0, len(all_labels) + 1), all_labels))


mapping = make_tag_lookup_table()
print(mapping)
{0: '[PAD]', 1: 'O', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-ORG', 6: 'B-LOC', 7: 'I-LOC', 8: 'B-MISC', 9: 'I-MISC'}

訓練データセットの総てのトークンのリストを取得します。これは語彙を作成するために使用されます。

all_tokens = sum(conll_data["train"]["tokens"], [])
all_tokens_array = np.array(list(map(str.lower, all_tokens)))

counter = Counter(all_tokens_array)
print(len(counter))

num_tags = len(mapping)
vocab_size = 20000

# We only take (vocab_size - 2) most commons words from the training data since
# the `StringLookup` class uses 2 additional tokens - one denoting an unknown
# token and another one denoting a masking token
vocabulary = [token for token, count in counter.most_common(vocab_size - 2)]

# The StringLook class will convert tokens to token IDs
lookup_layer = keras.layers.StringLookup(
    vocabulary=vocabulary
)
21009

訓練と検証データから 2 つの新しい Dataset オブジェクトを作成します。

train_data = tf.data.TextLineDataset("./data/conll_train.txt")
val_data = tf.data.TextLineDataset("./data/conll_val.txt")

1 行を出力してそれが上手く見えるか確認します。行の最初のレコードはトークン数です。その後、総てのトークン、続いて総ての ner タグを持ちます。

print(list(train_data.take(1).as_numpy_iterator()))
[b'9\tEU\trejects\tGerman\tcall\tto\tboycott\tBritish\tlamb\t.\t3\t0\t7\t0\t0\t0\t7\t0\t0']

データセットのデータを変換するために次の map 関数を使用していきます :

def map_record_to_training_data(record):
    record = tf.strings.split(record, sep="\t")
    length = tf.strings.to_number(record[0], out_type=tf.int32)
    tokens = record[1 : length + 1]
    tags = record[length + 1 :]
    tags = tf.strings.to_number(tags, out_type=tf.int64)
    tags += 1
    return tokens, tags


def lowercase_and_convert_to_ids(tokens):
    tokens = tf.strings.lower(tokens)
    return lookup_layer(tokens)


# We use `padded_batch` here because each record in the dataset has a
# different length.
batch_size = 32
train_dataset = (
    train_data.map(map_record_to_training_data)
    .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
    .padded_batch(batch_size)
)
val_dataset = (
    val_data.map(map_record_to_training_data)
    .map(lambda x, y: (lowercase_and_convert_to_ids(x), y))
    .padded_batch(batch_size)
)

ner_model = NERModel(num_tags, vocab_size, embed_dim=32, num_heads=4, ff_dim=64)

パディングされたトークンからの損失を無視するカスタム損失関数を使用していきます。

class CustomNonPaddingTokenLoss(keras.losses.Loss):
    def __init__(self, name="custom_ner_loss"):
        super().__init__(name=name)

    def call(self, y_true, y_pred):
        loss_fn = keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=keras.losses.Reduction.NONE
        )
        loss = loss_fn(y_true, y_pred)
        mask = tf.cast((y_true > 0), dtype=tf.float32)
        loss = loss * mask
        return tf.reduce_sum(loss) / tf.reduce_sum(mask)


loss = CustomNonPaddingTokenLoss()

 

モデルをコンパイルして適合させる

ner_model.compile(optimizer="adam", loss=loss)
ner_model.fit(train_dataset, epochs=10)


def tokenize_and_convert_to_ids(text):
    tokens = text.split()
    return lowercase_and_convert_to_ids(tokens)


# Sample inference using the trained model
sample_input = tokenize_and_convert_to_ids(
    "eu rejects german call to boycott british lamb"
)
sample_input = tf.reshape(sample_input, shape=[1, -1])
print(sample_input)

output = ner_model.predict(sample_input)
prediction = np.argmax(output, axis=-1)[0]
prediction = [mapping[i] for i in prediction]

# eu -> B-ORG, german -> B-MISC, british -> B-MISC
print(prediction)
Epoch 1/10
439/439 [==============================] - 13s 26ms/step - loss: 0.9300
Epoch 2/10
439/439 [==============================] - 11s 24ms/step - loss: 0.2997
Epoch 3/10
439/439 [==============================] - 11s 24ms/step - loss: 0.1544
Epoch 4/10
439/439 [==============================] - 11s 25ms/step - loss: 0.1129
Epoch 5/10
439/439 [==============================] - 11s 25ms/step - loss: 0.0875
Epoch 6/10
439/439 [==============================] - 11s 25ms/step - loss: 0.0696
Epoch 7/10
439/439 [==============================] - 11s 25ms/step - loss: 0.0597
Epoch 8/10
439/439 [==============================] - 11s 25ms/step - loss: 0.0509
Epoch 9/10
439/439 [==============================] - 11s 25ms/step - loss: 0.0461
Epoch 10/10
439/439 [==============================] - 11s 25ms/step - loss: 0.0408
tf.Tensor([[  989 10951   205   629     7  3939   216  5774]], shape=(1, 8), dtype=int64)
['B-ORG', 'O', 'B-MISC', 'O', 'O', 'O', 'B-MISC', 'O']

 

メトリクス計算

ここにメトリクスを計算する関数があります。この関数は NER データセット全体に対する F1 スコアと各 NER タグに対する個別のスコアを計算します。

def calculate_metrics(dataset):
    all_true_tag_ids, all_predicted_tag_ids = [], []

    for x, y in dataset:
        output = ner_model.predict(x)
        predictions = np.argmax(output, axis=-1)
        predictions = np.reshape(predictions, [-1])

        true_tag_ids = np.reshape(y, [-1])

        mask = (true_tag_ids > 0) & (predictions > 0)
        true_tag_ids = true_tag_ids[mask]
        predicted_tag_ids = predictions[mask]

        all_true_tag_ids.append(true_tag_ids)
        all_predicted_tag_ids.append(predicted_tag_ids)

    all_true_tag_ids = np.concatenate(all_true_tag_ids)
    all_predicted_tag_ids = np.concatenate(all_predicted_tag_ids)

    predicted_tags = [mapping[tag] for tag in all_predicted_tag_ids]
    real_tags = [mapping[tag] for tag in all_true_tag_ids]

    evaluate(real_tags, predicted_tags)


calculate_metrics(val_dataset)
processed 51362 tokens with 5942 phrases; found: 5504 phrases; correct: 3855.
accuracy:  63.28%; (non-O)
accuracy:  93.22%; precision:  70.04%; recall:  64.88%; FB1:  67.36
              LOC: precision:  85.67%; recall:  78.12%; FB1:  81.72  1675
             MISC: precision:  73.15%; recall:  65.29%; FB1:  69.00  823
              ORG: precision:  56.05%; recall:  63.53%; FB1:  59.56  1520
              PER: precision:  65.01%; recall:  52.44%; FB1:  58.05  1486

 

終わりに

この課題では、単純な transformer ベースの固有表現認識モデルを作成しました。CoNLL 2003 共有タスクデータでそれを訓練しておよそ 70% の全体的な F1 スコアを得ました。BERT or ELECTRA のような事前訓練済みモデルで最調整された最先端の NER モデルは、事前訓練プロセスの一部としての単語の固有知識とサブワードトークン化の使用により、このデータセットで 90-95% の間の遥かに高い F1 スコアを簡単に得ることができます。

Hugging Face Hub にホストされている訓練済みモデルを使用して Hugging Face Spaces でデモを試すことができます。

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント
  • LangGraph : Prebuilt エージェント : メモリ

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (19) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年5月
月 火 水 木 金 土 日
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
« 3月   6月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme