Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 自然言語処理 – FNet によるテキスト生成

Posted on 06/12/202206/14/2022 by Sales Information

Keras 2 : examples : NLP – FNet によるテキスト生成 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/12/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Natural Language Processing : Text Generation using FNet (Author: Darshan Deshpande)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

Keras 2 : examples : 自然言語処理 – FNet によるテキスト生成

Description : Keras におけるテキスト生成のための FNet transformer

 

イントロダクション

オリジナルの transformer 実装 (Vaswani et al., 2017) は自然言語処理における主要なブレイクスルーの一つで、BERT と GPT のような重要なアーキテクチャをもたらしました。けれども、これらのアーキテクチャの欠点はそれらが使用する自己注意メカニズムが計算的に高価であることです。FNet アーキテクチャはこの自己注意をより効率的なメカニズムと置き換えることを提案しています : 入力トークンに対するフーリエ変換ベースの線形 mixer です。

FNet モデルは、GPU で 80% そして TPU でおよそ 70% 高速に訓練しながら、BERT の精度の 92-97% を達成することができました。このタイプの設計は効率的で小さいモデルサイズを提供し、より速い推論時間に繋がります。

この例では、このモデルのテキスト生成に対する適用可能性を示すために、このアーキテクチャを Cornell 映画 Dialog コーパス上で実装して訓練します。

 

Imports

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import os
import re

# Defining hyperparameters

VOCAB_SIZE = 8192
MAX_SAMPLES = 50000
BUFFER_SIZE = 20000
MAX_LENGTH = 40
EMBED_DIM = 256
LATENT_DIM = 512
NUM_HEADS = 8
BATCH_SIZE = 64

 

データのロード

Cornell Dialog コーパスを使用していきます。映画の会話を質問と回答のセットにパースします。

path_to_zip = keras.utils.get_file(
    "cornell_movie_dialogs.zip",
    origin="http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip",
    extract=True,
)

path_to_dataset = os.path.join(
    os.path.dirname(path_to_zip), "cornell movie-dialogs corpus"
)
path_to_movie_lines = os.path.join(path_to_dataset, "movie_lines.txt")
path_to_movie_conversations = os.path.join(path_to_dataset, "movie_conversations.txt")


def load_conversations():
    # Helper function for loading the conversation splits
    id2line = {}
    with open(path_to_movie_lines, errors="ignore") as file:
        lines = file.readlines()
    for line in lines:
        parts = line.replace("\n", "").split(" +++$+++ ")
        id2line[parts[0]] = parts[4]

    inputs, outputs = [], []
    with open(path_to_movie_conversations, "r") as file:
        lines = file.readlines()
    for line in lines:
        parts = line.replace("\n", "").split(" +++$+++ ")
        # get conversation in a list of line ID
        conversation = [line[1:-1] for line in parts[3][1:-1].split(", ")]
        for i in range(len(conversation) - 1):
            inputs.append(id2line[conversation[i]])
            outputs.append(id2line[conversation[i + 1]])
            if len(inputs) >= MAX_SAMPLES:
                return inputs, outputs
    return inputs, outputs


questions, answers = load_conversations()

# Splitting training and validation sets

train_dataset = tf.data.Dataset.from_tensor_slices((questions[:40000], answers[:40000]))
val_dataset = tf.data.Dataset.from_tensor_slices((questions[40000:], answers[40000:]))
Downloading data from http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip
9920512/9916637 [==============================] - 0s 0us/step
9928704/9916637 [==============================] - 0s 0us/step

 

前処理とトークン化

def preprocess_text(sentence):
    sentence = tf.strings.lower(sentence)
    # Adding a space between the punctuation and the last word to allow better tokenization
    sentence = tf.strings.regex_replace(sentence, r"([?.!,])", r" \1 ")
    # Replacing multiple continuous spaces with a single space
    sentence = tf.strings.regex_replace(sentence, r"\s\s+", " ")
    # Replacing non english words with spaces
    sentence = tf.strings.regex_replace(sentence, r"[^a-z?.!,]+", " ")
    sentence = tf.strings.strip(sentence)
    sentence = tf.strings.join(["[start]", sentence, "[end]"], separator=" ")
    return sentence


vectorizer = layers.TextVectorization(
    VOCAB_SIZE,
    standardize=preprocess_text,
    output_mode="int",
    output_sequence_length=MAX_LENGTH,
)

# We will adapt the vectorizer to both the questions and answers
# This dataset is batched to parallelize and speed up the process
vectorizer.adapt(tf.data.Dataset.from_tensor_slices((questions + answers)).batch(128))

 

TextVectorization を使用したセンテンスのトークン化とパディング

def vectorize_text(inputs, outputs):
    inputs, outputs = vectorizer(inputs), vectorizer(outputs)
    # One extra padding token to the right to match the output shape
    outputs = tf.pad(outputs, [[0, 1]])
    return (
        {"encoder_inputs": inputs, "decoder_inputs": outputs[:-1]},
        {"outputs": outputs[1:]},
    )


train_dataset = train_dataset.map(vectorize_text, num_parallel_calls=tf.data.AUTOTUNE)
val_dataset = val_dataset.map(vectorize_text, num_parallel_calls=tf.data.AUTOTUNE)

train_dataset = (
    train_dataset.cache()
    .shuffle(BUFFER_SIZE)
    .batch(BATCH_SIZE)
    .prefetch(tf.data.AUTOTUNE)
)
val_dataset = val_dataset.cache().batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)

 

FNet エンコーダの作成

FNet の論文は Transformer アーキテクチャ (Vaswani et al., 2017) により使用される標準的な注意メカニズムへの代替を提案しています。

FFT 層の出力は複素数です。複素数の層を扱うことを避けるために、実部 (大きさ) だけが抽出されます。

フーリエ変換に続く dense 層は周波数領域に適用される畳み込みとして機能します。

class FNetEncoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, **kwargs):
        super(FNetEncoder, self).__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.dense_proj = keras.Sequential(
            [
                layers.Dense(dense_dim, activation="relu"),
                layers.Dense(embed_dim),
            ]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()

    def call(self, inputs):
        # Casting the inputs to complex64
        inp_complex = tf.cast(inputs, tf.complex64)
        # Projecting the inputs to the frequency domain using FFT2D and
        # extracting the real part of the output
        fft = tf.math.real(tf.signal.fft2d(inp_complex))
        proj_input = self.layernorm_1(inputs + fft)
        proj_output = self.dense_proj(proj_input)
        return self.layernorm_2(proj_input + proj_output)

 

デコーダの作成

デコーダ・アーキテクチャは元の transformer アーキテクチャで (Vaswani et al., 2017) により提案されたものと同じままで、埋め込み, 位置エンコーディング, 2 つの masked マルチヘッド注意層と最後に dense 出力層で構成されています。続くアーキテクチャは Deep Learning with Python, second edition, chapter 11 から取られています。

class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super(PositionalEmbedding, self).__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return tf.math.not_equal(inputs, 0)


class FNetDecoder(layers.Layer):
    def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
        super(FNetDecoder, self).__init__(**kwargs)
        self.embed_dim = embed_dim
        self.latent_dim = latent_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.dense_proj = keras.Sequential(
            [
                layers.Dense(latent_dim, activation="relu"),
                layers.Dense(embed_dim),
            ]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()
        self.supports_masking = True

    def call(self, inputs, encoder_outputs, mask=None):
        causal_mask = self.get_causal_attention_mask(inputs)
        if mask is not None:
            padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32")
            padding_mask = tf.minimum(padding_mask, causal_mask)

        attention_output_1 = self.attention_1(
            query=inputs, value=inputs, key=inputs, attention_mask=causal_mask
        )
        out_1 = self.layernorm_1(inputs + attention_output_1)

        attention_output_2 = self.attention_2(
            query=out_1,
            value=encoder_outputs,
            key=encoder_outputs,
            attention_mask=padding_mask,
        )
        out_2 = self.layernorm_2(out_1 + attention_output_2)

        proj_output = self.dense_proj(out_2)
        return self.layernorm_3(out_2 + proj_output)

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
            axis=0,
        )
        return tf.tile(mask, mult)


def create_model():
    encoder_inputs = keras.Input(shape=(None,), dtype="int32", name="encoder_inputs")
    x = PositionalEmbedding(MAX_LENGTH, VOCAB_SIZE, EMBED_DIM)(encoder_inputs)
    encoder_outputs = FNetEncoder(EMBED_DIM, LATENT_DIM)(x)
    encoder = keras.Model(encoder_inputs, encoder_outputs)
    decoder_inputs = keras.Input(shape=(None,), dtype="int32", name="decoder_inputs")
    encoded_seq_inputs = keras.Input(
        shape=(None, EMBED_DIM), name="decoder_state_inputs"
    )
    x = PositionalEmbedding(MAX_LENGTH, VOCAB_SIZE, EMBED_DIM)(decoder_inputs)
    x = FNetDecoder(EMBED_DIM, LATENT_DIM, NUM_HEADS)(x, encoded_seq_inputs)
    x = layers.Dropout(0.5)(x)
    decoder_outputs = layers.Dense(VOCAB_SIZE, activation="softmax")(x)
    decoder = keras.Model(
        [decoder_inputs, encoded_seq_inputs], decoder_outputs, name="outputs"
    )
    decoder_outputs = decoder([decoder_inputs, encoder_outputs])
    fnet = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs, name="fnet")
    return fnet

 

モデルの作成と訓練

fnet = create_model()
fnet.compile("adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])

ここで、epochs パラメータは単一エポックに設定しますが、実際には、理解可能なセンテンスを出力し始めるにはおよそ 20-30 エポック の訓練が必要です。精度はこのタスクに対しては良い尺度ではありませんが、ネットワークの改良のヒントを得るためだけにそれを使用します。

fnet.fit(train_dataset, epochs=1, validation_data=val_dataset)
625/625 [==============================] - 96s 133ms/step - loss: 1.3036 - accuracy: 0.4354 - val_loss: 0.7964 - val_accuracy: 0.6374

<keras.callbacks.History at 0x7f0d8d214c90>

 

推論の実行

VOCAB = vectorizer.get_vocabulary()


def decode_sentence(input_sentence):
    # Mapping the input sentence to tokens and adding start and end tokens
    tokenized_input_sentence = vectorizer(
        tf.constant("[start] " + preprocess_text(input_sentence) + " [end]")
    )
    # Initializing the initial sentence consisting of only the start token.
    tokenized_target_sentence = tf.expand_dims(VOCAB.index("[start]"), 0)
    decoded_sentence = ""

    for i in range(MAX_LENGTH):
        # Get the predictions
        predictions = fnet.predict(
            {
                "encoder_inputs": tf.expand_dims(tokenized_input_sentence, 0),
                "decoder_inputs": tf.expand_dims(
                    tf.pad(
                        tokenized_target_sentence,
                        [[0, MAX_LENGTH - tf.shape(tokenized_target_sentence)[0]]],
                    ),
                    0,
                ),
            }
        )
        # Calculating the token with maximum probability and getting the corresponding word
        sampled_token_index = tf.argmax(predictions[0, i, :])
        sampled_token = VOCAB[sampled_token_index.numpy()]
        # If sampled token is the end token then stop generating and return the sentence
        if tf.equal(sampled_token_index, VOCAB.index("[end]")):
            break
        decoded_sentence += sampled_token + " "
        tokenized_target_sentence = tf.concat(
            [tokenized_target_sentence, [sampled_token_index]], 0
        )

    return decoded_sentence


decode_sentence("Where have you been all this time?")
'i m sorry .'

 

終わりに

この例は FNet モデルを使用して訓練そして推論を実行する方法を示しています。アーキテクチャへの洞察を得たり更なる読書のためには、以下を参照できます :

  1. FNet: Mixing Tokens with Fourier Transforms (Lee-Thorp et al., 2021)
  2. Attention Is All You Need (Vaswani et al., 2017)

Thanks to François Chollet for his Keras example on English-to-Spanish translation with a sequence-to-sequence Transformer from which the decoder implementation was extracted.

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年6月
月 火 水 木 金 土 日
 12345
6789101112
13141516171819
20212223242526
27282930  
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme