Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 時系列 – 天気予報のための時系列予測

Posted on 06/24/202206/25/2022 by Sales Information

Keras 2 : examples : 時系列 – 天気予報のための時系列予測 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/24/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Timeseries : Timeseries forecasting for weather prediction (Author: Prabhanshu Attri, Yashika Sharma, Kristi Takach, Falak Shah)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

Keras 2 : examples : 時系列 – 天気予報のための時系列予測

Description : このノートブックは LSTM モデルを使用して時系列予測を行なう方法を実演します。

 

セットアップ

This example requires TensorFlow 2.3 or higher.

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras

 

気候データ時系列

Max Planck Institute for Biogeochemistry (生物地球化学) により記録された Jena 気候データセットを使用していきます。データセットは、気温、気圧、湿度 等のような 14 の特徴で構成され、10 分毎に一度記録されています。

場所 : Weather Station, Max Planck Institute for Biogeochemistry in Jena, Germany

考慮された時間枠 : Jan 10, 2009 – December 31, 2016

下のテーブルはカラム名、それらの値形式、そしてそれらの説明を示します。

from zipfile import ZipFile
import os

uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
zip_file = ZipFile(zip_path)
zip_file.extractall()
csv_path = "jena_climate_2009_2016.csv"

df = pd.read_csv(csv_path)

 

Raw データの可視化

作業しているデータの感覚を得るために、各特徴は下でプロットされます。これは 2009 から 2016 年の期間に渡る各特徴の明白なパターンを示します。それはまた、正規化の際に対処される、異常がどこに存在するかも示します。

titles = [
    "Pressure",
    "Temperature",
    "Temperature in Kelvin",
    "Temperature (dew point)",
    "Relative Humidity",
    "Saturation vapor pressure",
    "Vapor pressure",
    "Vapor pressure deficit",
    "Specific humidity",
    "Water vapor concentration",
    "Airtight",
    "Wind speed",
    "Maximum wind speed",
    "Wind direction in degrees",
]

feature_keys = [
    "p (mbar)",
    "T (degC)",
    "Tpot (K)",
    "Tdew (degC)",
    "rh (%)",
    "VPmax (mbar)",
    "VPact (mbar)",
    "VPdef (mbar)",
    "sh (g/kg)",
    "H2OC (mmol/mol)",
    "rho (g/m**3)",
    "wv (m/s)",
    "max. wv (m/s)",
    "wd (deg)",
]

colors = [
    "blue",
    "orange",
    "green",
    "red",
    "purple",
    "brown",
    "pink",
    "gray",
    "olive",
    "cyan",
]

date_time_key = "Date Time"


def show_raw_visualization(data):
    time_data = data[date_time_key]
    fig, axes = plt.subplots(
        nrows=7, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k"
    )
    for i in range(len(feature_keys)):
        key = feature_keys[i]
        c = colors[i % (len(colors))]
        t_data = data[key]
        t_data.index = time_data
        t_data.head()
        ax = t_data.plot(
            ax=axes[i // 2, i % 2],
            color=c,
            title="{} - {}".format(titles[i], key),
            rot=25,
        )
        ax.legend([titles[i]])
    plt.tight_layout()


show_raw_visualization(df)

このヒートマップは異なる特徴間の相関性を示しています。

def show_heatmap(data):
    plt.matshow(data.corr())
    plt.xticks(range(data.shape[1]), data.columns, fontsize=14, rotation=90)
    plt.gca().xaxis.tick_bottom()
    plt.yticks(range(data.shape[1]), data.columns, fontsize=14)

    cb = plt.colorbar()
    cb.ax.tick_params(labelsize=14)
    plt.title("Feature Correlation Heatmap", fontsize=14)
    plt.show()


show_heatmap(df)

 

データ前処理

ここでは訓練のために ~300,000 データポイントを選択しています。観測は 10 分毎に記録されています、つまり 1 時間毎に 6 回です。1 時間毎に 1 ポイントをリサンプリングします、60 分内には劇的な変化は想定されないからです。timeseries_dataset_from_array ユティリティの sampling_rate 引数によってこれを行います。

過去の 720 タイムスタンプ (720/6=12 時間) からのデータを追跡しています。このデータは、72 タイムスタンプ (72/6=12 hours) 後の気温を予測するために使用されます。

総ての特徴は様々な範囲の値を持ちますので、ニューラルネットワークを訓練する前に、特徴値を [0, 1] の範囲に閉じ込めるために正規化を行います。各特徴の平均を減算して標準偏差で除算することでこれを行います。

モデルを訓練するためにデータの 71.5 % i.e. 300,693 行が使用されます。この割合を変更するために split_fraction が変更できます。

モデルには最初の 5 日間 i.e. 720 観測データが示されます。72 (12 時間 * 6 観測 per 時間) 観測後の気温がラベルとして使用されます。

split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6

past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10


def normalize(data, train_split):
    data_mean = data[:train_split].mean(axis=0)
    data_std = data[:train_split].std(axis=0)
    return (data - data_mean) / data_std

相関ヒートマップから分かるように、Relative Humidity と Specific Humidity のような幾つかのパラメータは冗長です。そのため、総てではなく、選択された特徴を使用していきます。

print(
    "The selected parameters are:",
    ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
)
selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
features = df[selected_features]
features.index = df[date_time_key]
features.head()

features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()

train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
The selected parameters are: Pressure, Temperature, Saturation vapor pressure, Vapor pressure deficit, Specific humidity, Airtight, Wind speed

 

訓練データセット

訓練データセット・ラベルは 792nd 観測値 (720 + 72) から始まります。

start = past + future
end = start + train_split

x_train = train_data[[i for i in range(7)]].values
y_train = features.iloc[start:end][[1]]

sequence_length = int(past / step)

timeseries_dataset_from_array 関数は、等間隔で集められたデータポイントのシークエンスを、シークエンス/ウィンドウの長さ、2 つのシークエンス/ウィンドウ間の間隔のような時系列パラメータと共に取り、主時系列からサンプリングされたサブ時系列の入力とターゲットのバッチを生成します。

dataset_train = keras.preprocessing.timeseries_dataset_from_array(
    x_train,
    y_train,
    sequence_length=sequence_length,
    sampling_rate=step,
    batch_size=batch_size,
)

 

検証データセット

検証データセットは最後の 792 行を含んではなりません、それらの記録のためのラベルデータを持たないからです、従ってデータの最後から 792 を差し引かれなければなりません。

検証ラベルデータセットは train_split の後の 792 から始まる必要がありますので、label_start に past + future (792) を加算しなければなりません。

x_end = len(val_data) - past - future

label_start = train_split + past + future

x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
y_val = features.iloc[label_start:][[1]]

dataset_val = keras.preprocessing.timeseries_dataset_from_array(
    x_val,
    y_val,
    sequence_length=sequence_length,
    sampling_rate=step,
    batch_size=batch_size,
)


for batch in dataset_train.take(1):
    inputs, targets = batch

print("Input shape:", inputs.numpy().shape)
print("Target shape:", targets.numpy().shape)
Input shape: (256, 120, 7)
Target shape: (256, 1)

 

訓練

inputs = keras.layers.Input(shape=(inputs.shape[1], inputs.shape[2]))
lstm_out = keras.layers.LSTM(32)(inputs)
outputs = keras.layers.Dense(1)(lstm_out)

model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss="mse")
model.summary()
Model: "functional_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         [(None, 120, 7)]          0
_________________________________________________________________
lstm (LSTM)                  (None, 32)                5120
_________________________________________________________________
dense (Dense)                (None, 1)                 33
=================================================================
Total params: 5,153
Trainable params: 5,153
Non-trainable params: 0
_________________________________________________________________

チェックポイントを定期的にセーブするために ModelCheckpoint コールバックを、そして検証損失がもはや改善しないときに訓練を中断するために EarlyStopping コールバックを使用します。

path_checkpoint = "model_checkpoint.h5"
es_callback = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=5)

modelckpt_callback = keras.callbacks.ModelCheckpoint(
    monitor="val_loss",
    filepath=path_checkpoint,
    verbose=1,
    save_weights_only=True,
    save_best_only=True,
)

history = model.fit(
    dataset_train,
    epochs=epochs,
    validation_data=dataset_val,
    callbacks=[es_callback, modelckpt_callback],
)
Epoch 1/10
1172/1172 [==============================] - ETA: 0s - loss: 0.2059
Epoch 00001: val_loss improved from inf to 0.16357, saving model to model_checkpoint.h5
1172/1172 [==============================] - 101s 86ms/step - loss: 0.2059 - val_loss: 0.1636
Epoch 2/10
1172/1172 [==============================] - ETA: 0s - loss: 0.1271
Epoch 00002: val_loss improved from 0.16357 to 0.13362, saving model to model_checkpoint.h5
1172/1172 [==============================] - 107s 92ms/step - loss: 0.1271 - val_loss: 0.1336
Epoch 3/10
1172/1172 [==============================] - ETA: 0s - loss: 0.1089
Epoch 00005: val_loss did not improve from 0.13362
1172/1172 [==============================] - 110s 94ms/step - loss: 0.1089 - val_loss: 0.1481
Epoch 6/10
 271/1172 [=====>........................] - ETA: 1:12 - loss: 0.1117

損失を次の関数で可視化できます。1 つの点の後、損失は減少をやめます。

def visualize_loss(history, title):
    loss = history.history["loss"]
    val_loss = history.history["val_loss"]
    epochs = range(len(loss))
    plt.figure()
    plt.plot(epochs, loss, "b", label="Training loss")
    plt.plot(epochs, val_loss, "r", label="Validation loss")
    plt.title(title)
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    plt.legend()
    plt.show()


visualize_loss(history, "Training and Validation Loss")

 

予測

今では上の訓練済みモデルは検証セットからの 5 セットの値に対する予測を行なうことができます。

def show_plot(plot_data, delta, title):
    labels = ["History", "True Future", "Model Prediction"]
    marker = [".-", "rx", "go"]
    time_steps = list(range(-(plot_data[0].shape[0]), 0))
    if delta:
        future = delta
    else:
        future = 0

    plt.title(title)
    for i, val in enumerate(plot_data):
        if i:
            plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
        else:
            plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
    plt.legend()
    plt.xlim([time_steps[0], (future + 5) * 2])
    plt.xlabel("Time-Step")
    plt.show()
    return


for x, y in dataset_val.take(5):
    show_plot(
        [x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
        12,
        "Single Step Prediction",
    )

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント
  • LangGraph : Prebuilt エージェント : メモリ

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (19) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年6月
月 火 水 木 金 土 日
 12345
6789101112
13141516171819
20212223242526
27282930  
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme