Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 音声データ – CTC を使用した自動発話認識

Posted on 06/25/202206/27/2022 by Sales Information

Keras 2 : examples : 音声データ – CTC を使用した自動発話認識 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/25/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Audio Data : Automatic Speech Recognition using CTC (Author: Mohamed Reda Bouadjenek and Ngoc Dung Huynh)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

Keras 2 : examples : 音声データ – CTC を使用した自動発話認識

Description : 自動発話認識のための CTC ベース・モデルの訓練。

 

イントロダクション

発話認識はコンピュータサイエンスと計算言語学の分野にまたがるサブ領域で、コンピュータによる口語の認識とテキストへの翻訳を可能にする方法と技術を開発します。それはまた自動発話認識 (ASR), コンピュータ発話認識や speech to text (STT) としても知られています。それはコンピュータサイエンス、言語学とコンピュータ工学の分野の知識と研究を組込んでいます。

これは ASR を構築するために 2D CNN, RNN と Connectionist Temporal Classification (CTC) 損失を結合する方法を実演します。CTC は発話認識、手書き認識と他のシークエンス問題の深層ニューラルネットワークを訓練するために使用されるアルゴリズムです。CTC は、入力が出力とどのように整列されるか (トランスクリプトの文字が音声にどのように整列されるか) を知らないときに使用されます。作成するモデルは DeepSpeech2 に類似しています。

LibriVox プロジェクトからの LJSpeech データセットを使用します。それは 7 つのノンフィクションの書籍から単一話者が読み上げる節 (= passages) の短い音声クリップから構成されます。

モデルの品質を単語誤り率 (WER, Word Error Rate) を使用して評価します。WER は認識された単語のシークエンスで発生した置換、挿入と削除を合計して得られます。その数をもともと話された単語の総数で除算します。その結果が WER です。WER スコアを得るには jiwer パッケージをインストールする必要があります。以下のコマンド行を使用できます :

pip install jiwer

 
References:

  • LJSpeech データセット
  • Speech recognition
  • Sequence Modeling With CTC
  • DeepSpeech2

 

セットアップ

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
from IPython import display
from jiwer import wer

 

LJSpeech データセットのロード

LJSpeech データセット をダウンロードしましょう。データセットは 13,100 音声ファイルを /wavs/ フォルダに wav ファイルとして含みます。各音声ファイルに対するラベル (トランスクリプト) は metadata.csv ファイルで与えられる文字列です。フィールドは :

  • ID : これは対応する .wav ファイルの名前です。

  • Transcription : 朗読者により話された単語 (UTF-8)

  • Normalized transcription : 数字、序数と通貨単位が完全な単語 (UTF-8) に展開されたトランスクリプション。

このデモについては “Normalized transcription” フィールドを使用します。

各音声ファイルは 22,050 Hz のサンプリングレートを持つ単一チャネル 16-bit PCM WAV です。

data_url = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"
data_path = keras.utils.get_file("LJSpeech-1.1", data_url, untar=True)
wavs_path = data_path + "/wavs/"
metadata_path = data_path + "/metadata.csv"


# Read metadata file and parse it
metadata_df = pd.read_csv(metadata_path, sep="|", header=None, quoting=3)
metadata_df.columns = ["file_name", "transcription", "normalized_transcription"]
metadata_df = metadata_df[["file_name", "normalized_transcription"]]
metadata_df = metadata_df.sample(frac=1).reset_index(drop=True)
metadata_df.head(3)

そしてデータを訓練と検証セットに分割します。

split = int(len(metadata_df) * 0.90)
df_train = metadata_df[:split]
df_val = metadata_df[split:]

print(f"Size of the training set: {len(df_train)}")
print(f"Size of the training set: {len(df_val)}")
Size of the training set: 11790
Size of the training set: 1310

 

前処理

最初に使用される語彙を準備します。

# The set of characters accepted in the transcription.
characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "]
# Mapping characters to integers
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
# Mapping integers back to original characters
num_to_char = keras.layers.StringLookup(
    vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
)

print(
    f"The vocabulary is: {char_to_num.get_vocabulary()} "
    f"(size ={char_to_num.vocabulary_size()})"
)
The vocabulary is: ['', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', "'", '?', '!', ' '] (size =31)

2021-09-28 21:16:33.150832: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-09-28 21:16:33.692813: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:39] Overriding allow_growth setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.
2021-09-28 21:16:33.692847: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 9124 MB memory:  -> device: 0, name: GeForce RTX 2080 Ti, pci bus id: 0000:65:00.0, compute capability: 7.5

次に、データセットの各要素に適用する変換を記述する関数を作成します。

# An integer scalar Tensor. The window length in samples.
frame_length = 256
# An integer scalar Tensor. The number of samples to step.
frame_step = 160
# An integer scalar Tensor. The size of the FFT to apply.
# If not provided, uses the smallest power of 2 enclosing frame_length.
fft_length = 384


def encode_single_sample(wav_file, label):
    ###########################################
    ##  Process the Audio
    ##########################################
    # 1. Read wav file
    file = tf.io.read_file(wavs_path + wav_file + ".wav")
    # 2. Decode the wav file
    audio, _ = tf.audio.decode_wav(file)
    audio = tf.squeeze(audio, axis=-1)
    # 3. Change type to float
    audio = tf.cast(audio, tf.float32)
    # 4. Get the spectrogram
    spectrogram = tf.signal.stft(
        audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length
    )
    # 5. We only need the magnitude, which can be derived by applying tf.abs
    spectrogram = tf.abs(spectrogram)
    spectrogram = tf.math.pow(spectrogram, 0.5)
    # 6. normalisation
    means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
    stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
    spectrogram = (spectrogram - means) / (stddevs + 1e-10)
    ###########################################
    ##  Process the label
    ##########################################
    # 7. Convert label to Lower case
    label = tf.strings.lower(label)
    # 8. Split the label
    label = tf.strings.unicode_split(label, input_encoding="UTF-8")
    # 9. Map the characters in label to numbers
    label = char_to_num(label)
    # 10. Return a dict as our model is expecting two inputs
    return spectrogram, label

 

データセットオブジェクトの作成

入力に出現したのと同じ順序で変換された要素を生成する tf.data.Dataset オブジェクトを作成します。

batch_size = 32
# Define the trainig dataset
train_dataset = tf.data.Dataset.from_tensor_slices(
    (list(df_train["file_name"]), list(df_train["normalized_transcription"]))
)
train_dataset = (
    train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
    .padded_batch(batch_size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
)

# Define the validation dataset
validation_dataset = tf.data.Dataset.from_tensor_slices(
    (list(df_val["file_name"]), list(df_val["normalized_transcription"]))
)
validation_dataset = (
    validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
    .padded_batch(batch_size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
)

 

データの可視化

音声クリップ、スペクトログラムと対応するラベルを含む、データセットのサンプルを可視化しましょう。

fig = plt.figure(figsize=(8, 5))
for batch in train_dataset.take(1):
    spectrogram = batch[0][0].numpy()
    spectrogram = np.array([np.trim_zeros(x) for x in np.transpose(spectrogram)])
    label = batch[1][0]
    # Spectrogram
    label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8")
    ax = plt.subplot(2, 1, 1)
    ax.imshow(spectrogram, vmax=1)
    ax.set_title(label)
    ax.axis("off")
    # Wav
    file = tf.io.read_file(wavs_path + list(df_train["file_name"])[0] + ".wav")
    audio, _ = tf.audio.decode_wav(file)
    audio = audio.numpy()
    ax = plt.subplot(2, 1, 2)
    plt.plot(audio)
    ax.set_title("Signal Wave")
    ax.set_xlim(0, len(audio))
    display.display(display.Audio(np.transpose(audio), rate=16000))
plt.show()
2021-09-28 21:16:34.014170: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)

 

モデル

CTC 損失関数を最初に定義します。

def CTCLoss(y_true, y_pred):
    # Compute the training-time loss value
    batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
    input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
    label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")

    input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
    label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")

    loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
    return loss

そしてモデルを定義します。DeepSpeech2 に類似したモデルを定義します。

def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128):
    """Model similar to DeepSpeech2."""
    # Model's input
    input_spectrogram = layers.Input((None, input_dim), name="input")
    # Expand the dimension to use 2D CNN.
    x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram)
    # Convolution layer 1
    x = layers.Conv2D(
        filters=32,
        kernel_size=[11, 41],
        strides=[2, 2],
        padding="same",
        use_bias=False,
        name="conv_1",
    )(x)
    x = layers.BatchNormalization(name="conv_1_bn")(x)
    x = layers.ReLU(name="conv_1_relu")(x)
    # Convolution layer 2
    x = layers.Conv2D(
        filters=32,
        kernel_size=[11, 21],
        strides=[1, 2],
        padding="same",
        use_bias=False,
        name="conv_2",
    )(x)
    x = layers.BatchNormalization(name="conv_2_bn")(x)
    x = layers.ReLU(name="conv_2_relu")(x)
    # Reshape the resulted volume to feed the RNNs layers
    x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)
    # RNN layers
    for i in range(1, rnn_layers + 1):
        recurrent = layers.GRU(
            units=rnn_units,
            activation="tanh",
            recurrent_activation="sigmoid",
            use_bias=True,
            return_sequences=True,
            reset_after=True,
            name=f"gru_{i}",
        )
        x = layers.Bidirectional(
            recurrent, name=f"bidirectional_{i}", merge_mode="concat"
        )(x)
        if i < rnn_layers:
            x = layers.Dropout(rate=0.5)(x)
    # Dense layer
    x = layers.Dense(units=rnn_units * 2, name="dense_1")(x)
    x = layers.ReLU(name="dense_1_relu")(x)
    x = layers.Dropout(rate=0.5)(x)
    # Classification layer
    output = layers.Dense(units=output_dim + 1, activation="softmax")(x)
    # Model
    model = keras.Model(input_spectrogram, output, name="DeepSpeech_2")
    # Optimizer
    opt = keras.optimizers.Adam(learning_rate=1e-4)
    # Compile the model and return
    model.compile(optimizer=opt, loss=CTCLoss)
    return model


# Get the model
model = build_model(
    input_dim=fft_length // 2 + 1,
    output_dim=char_to_num.vocabulary_size(),
    rnn_units=512,
)
model.summary(line_length=110)
Model: "DeepSpeech_2"
______________________________________________________________________________________________________________
Layer (type)                                     Output Shape                                Param #          
==============================================================================================================
input (InputLayer)                               [(None, None, 193)]                         0                
______________________________________________________________________________________________________________
expand_dim (Reshape)                             (None, None, 193, 1)                        0                
______________________________________________________________________________________________________________
conv_1 (Conv2D)                                  (None, None, 97, 32)                        14432            
______________________________________________________________________________________________________________
conv_1_bn (BatchNormalization)                   (None, None, 97, 32)                        128              
______________________________________________________________________________________________________________
conv_1_relu (ReLU)                               (None, None, 97, 32)                        0                
______________________________________________________________________________________________________________
conv_2 (Conv2D)                                  (None, None, 49, 32)                        236544           
______________________________________________________________________________________________________________
conv_2_bn (BatchNormalization)                   (None, None, 49, 32)                        128              
______________________________________________________________________________________________________________
conv_2_relu (ReLU)                               (None, None, 49, 32)                        0                
______________________________________________________________________________________________________________
reshape (Reshape)                                (None, None, 1568)                          0                
______________________________________________________________________________________________________________
bidirectional_1 (Bidirectional)                  (None, None, 1024)                          6395904          
______________________________________________________________________________________________________________
dropout (Dropout)                                (None, None, 1024)                          0                
______________________________________________________________________________________________________________
bidirectional_2 (Bidirectional)                  (None, None, 1024)                          4724736          
______________________________________________________________________________________________________________
dropout_1 (Dropout)                              (None, None, 1024)                          0                
______________________________________________________________________________________________________________
bidirectional_3 (Bidirectional)                  (None, None, 1024)                          4724736          
______________________________________________________________________________________________________________
dropout_2 (Dropout)                              (None, None, 1024)                          0                
______________________________________________________________________________________________________________
bidirectional_4 (Bidirectional)                  (None, None, 1024)                          4724736          
______________________________________________________________________________________________________________
dropout_3 (Dropout)                              (None, None, 1024)                          0                
______________________________________________________________________________________________________________
bidirectional_5 (Bidirectional)                  (None, None, 1024)                          4724736          
______________________________________________________________________________________________________________
dense_1 (Dense)                                  (None, None, 1024)                          1049600          
______________________________________________________________________________________________________________
dense_1_relu (ReLU)                              (None, None, 1024)                          0                
______________________________________________________________________________________________________________
dropout_4 (Dropout)                              (None, None, 1024)                          0                
______________________________________________________________________________________________________________
dense (Dense)                                    (None, None, 32)                            32800            
==============================================================================================================
Total params: 26,628,480
Trainable params: 26,628,352
Non-trainable params: 128
_______________________________________________________________________________________

 

訓練と評価

# A utility function to decode the output of the network
def decode_batch_predictions(pred):
    input_len = np.ones(pred.shape[0]) * pred.shape[1]
    # Use greedy search. For complex tasks, you can use beam search
    results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
    # Iterate over the results and get back the text
    output_text = []
    for result in results:
        result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8")
        output_text.append(result)
    return output_text


# A callback class to output a few transcriptions during training
class CallbackEval(keras.callbacks.Callback):
    """Displays a batch of outputs after every epoch."""

    def __init__(self, dataset):
        super().__init__()
        self.dataset = dataset

    def on_epoch_end(self, epoch: int, logs=None):
        predictions = []
        targets = []
        for batch in self.dataset:
            X, y = batch
            batch_predictions = model.predict(X)
            batch_predictions = decode_batch_predictions(batch_predictions)
            predictions.extend(batch_predictions)
            for label in y:
                label = (
                    tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8")
                )
                targets.append(label)
        wer_score = wer(targets, predictions)
        print("-" * 100)
        print(f"Word Error Rate: {wer_score:.4f}")
        print("-" * 100)
        for i in np.random.randint(0, len(predictions), 2):
            print(f"Target    : {targets[i]}")
            print(f"Prediction: {predictions[i]}")
            print("-" * 100)

訓練プロセスを開始しましょう。

# Define the number of epochs.
epochs = 1
# Callback function to check transcription on the val set.
validation_callback = CallbackEval(validation_dataset)
# Train the model
history = model.fit(
    train_dataset,
    validation_data=validation_dataset,
    epochs=epochs,
    callbacks=[validation_callback],
)
2021-09-28 21:16:48.067448: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8100

369/369 [==============================] - 586s 2s/step - loss: 300.4624 - val_loss: 296.1459
----------------------------------------------------------------------------------------------------
Word Error Rate: 0.9998
----------------------------------------------------------------------------------------------------
Target    : the procession traversed ratcliffe twice halting for a quarter of an hour in front of the victims' dwelling
Prediction: s
----------------------------------------------------------------------------------------------------
Target    : some difficulty then arose as to gaining admission to the strong room and it was arranged that a man may another custom house clerk
Prediction: s
----------------------------------------------------------------------------------------------------

 

推論

# Let's check results on more validation samples
predictions = []
targets = []
for batch in validation_dataset:
    X, y = batch
    batch_predictions = model.predict(X)
    batch_predictions = decode_batch_predictions(batch_predictions)
    predictions.extend(batch_predictions)
    for label in y:
        label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8")
        targets.append(label)
wer_score = wer(targets, predictions)
print("-" * 100)
print(f"Word Error Rate: {wer_score:.4f}")
print("-" * 100)
for i in np.random.randint(0, len(predictions), 5):
    print(f"Target    : {targets[i]}")
    print(f"Prediction: {predictions[i]}")
    print("-" * 100)
----------------------------------------------------------------------------------------------------
Word Error Rate: 0.9998
----------------------------------------------------------------------------------------------------
Target    : two of the nine agents returned to their rooms the seven others proceeded to an establishment called the cellar coffee house
Prediction: 
----------------------------------------------------------------------------------------------------
Target    : a scaffold was erected in front of that prison for the execution of several convicts named by the recorder
Prediction: sss
----------------------------------------------------------------------------------------------------
Target    : it was perpetrated upon a respectable country solicitor
Prediction: ss
----------------------------------------------------------------------------------------------------
Target    : oswald like all marine recruits received training on the rifle range at distances up to five hundred yards
Prediction: 
----------------------------------------------------------------------------------------------------
Target    : chief rowley testified that agents on duty in such a situation usually stay within the building during their relief
Prediction: s
----------------------------------------------------------------------------------------------------

 

終わりに

実際には約 50 エポックかそれ以上訓練するべきです。GeForce RTX 2080 Ti GPU を使用して各エポックはおよそ 5-6 分かかります。50 エポックで訓練したモデルは単語誤り率 (WER) ≈ 16% から 17% になります。

Audio file: LJ017-0009.wavv

- Target    : sir thomas overbury was undoubtedly poisoned by lord rochester in the reign
of james the first
- Prediction: cer thomas overbery was undoubtedly poisoned by lordrochester in the reign
of james the first

Audio file: LJ003-0340.wav

- Target    : the committee does not seem to have yet understood that newgate could be
only and properly replaced
- Prediction: the committee does not seem to have yet understood that newgate could be
only and proberly replace

Audio file: LJ011-0136.wav

- Target    : still no sentence of death was carried out for the offense and in eighteen
thirtytwo
- Prediction: still no sentence of death was carried out for the offense and in eighteen
thirtytwo

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年6月
月 火 水 木 金 土 日
 12345
6789101112
13141516171819
20212223242526
27282930  
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme