Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 生成深層学習 – ディープドリーム

Posted on 07/03/202207/07/2022 by Sales Information

Keras 2 : examples : 生成深層学習 – ディープドリーム (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 07/03/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Generative Deep Learning : Deep Dream (Author: fchollet)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

Keras 2 : examples : 生成深層学習 – ディープドリーム

Description : Keras でディープドリームを生成する。

 

イントロダクション

「ディープドリーム」は画像フィルタリング・テクニックで、これは画像分類モデルを取り、入力画像に対して特定の層 (そして時に、特定の層の特定のユニット) の活性の最大化を試みるために入力画像に勾配上昇を実行することから成ります。それは幻想のような映像を生成します。

それは最初に 2015年7月に Google の Alexander Mordvintsev により紹介されました。

プロセス :

  • 元の画像をロードする。
  • 処理スケール (“octaves”) の数を定義します、最小から最大までです。
  • 元の画像を最小スケールにリサイズします。
  • 総てのスケールについて、最小 (i.e. 現在のもの) から始めて : – 勾配上昇の実行 – 画像を次のスケールにアップスケール – アップスケーリング時に失われた詳細を再注入する。
  • 元のサイズに戻ったときに停止します。アップスケーリングの際に失われた詳細を得るには、単純に元の画像を取り、それを縮小し、アップスケールし、そして結果を (リサイズされた) 元の画像と比較します。

 

セットアップ

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.applications import inception_v3

base_image_path = keras.utils.get_file("sky.jpg", "https://i.imgur.com/aGBdQyK.jpg")
result_prefix = "sky_dream"

# These are the names of the layers
# for which we try to maximize activation,
# as well as their weight in the final loss
# we try to maximize.
# You can tweak these setting to obtain new visual effects.
layer_settings = {
    "mixed4": 1.0,
    "mixed5": 1.5,
    "mixed6": 2.0,
    "mixed7": 2.5,
}

# Playing with these hyperparameters will also allow you to achieve new effects
step = 0.01  # Gradient ascent step size
num_octave = 3  # Number of scales at which to run gradient ascent
octave_scale = 1.4  # Size ratio between scales
iterations = 20  # Number of ascent steps per scale
max_loss = 15.0

これがベース画像です :

from IPython.display import Image, display

display(Image(base_image_path))

幾つかの画像前処理 / deprocessing ユティリティをセットアップしましょう :

def preprocess_image(image_path):
    # Util function to open, resize and format pictures
    # into appropriate arrays.
    img = keras.preprocessing.image.load_img(image_path)
    img = keras.preprocessing.image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = inception_v3.preprocess_input(img)
    return img


def deprocess_image(x):
    # Util function to convert a NumPy array into a valid image.
    x = x.reshape((x.shape[1], x.shape[2], 3))
    # Undo inception v3 preprocessing
    x /= 2.0
    x += 0.5
    x *= 255.0
    # Convert to uint8 and clip to the valid range [0, 255]
    x = np.clip(x, 0, 255).astype("uint8")
    return x

 

ディープドリーム損失の計算

最初に、入力画像が与えられたときターゲット層の活性を取得する特徴抽出モデルを構築します。

# Build an InceptionV3 model loaded with pre-trained ImageNet weights
model = inception_v3.InceptionV3(weights="imagenet", include_top=False)

# Get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict(
    [
        (layer.name, layer.output)
        for layer in [model.get_layer(name) for name in layer_settings.keys()]
    ]
)

# Set up a model that returns the activation values for every target layer
# (as a dict)
feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)

実際の損失計算は非常に単純です :

def compute_loss(input_image):
    features = feature_extractor(input_image)
    # Initialize the loss
    loss = tf.zeros(shape=())
    for name in features.keys():
        coeff = layer_settings[name]
        activation = features[name]
        # We avoid border artifacts by only involving non-border pixels in the loss.
        scaling = tf.reduce_prod(tf.cast(tf.shape(activation), "float32"))
        loss += coeff * tf.reduce_sum(tf.square(activation[:, 2:-2, 2:-2, :])) / scaling
    return loss

 

one octave のための勾配上昇ループのセットアップ

@tf.function
def gradient_ascent_step(img, learning_rate):
    with tf.GradientTape() as tape:
        tape.watch(img)
        loss = compute_loss(img)
    # Compute gradients.
    grads = tape.gradient(loss, img)
    # Normalize gradients.
    grads /= tf.maximum(tf.reduce_mean(tf.abs(grads)), 1e-6)
    img += learning_rate * grads
    return loss, img


def gradient_ascent_loop(img, iterations, learning_rate, max_loss=None):
    for i in range(iterations):
        loss, img = gradient_ascent_step(img, learning_rate)
        if max_loss is not None and loss > max_loss:
            break
        print("... Loss value at step %d: %.2f" % (i, loss))
    return img

 

異なる octave に渡りイテレートする、訓練ループの実行

original_img = preprocess_image(base_image_path)
original_shape = original_img.shape[1:3]

successive_shapes = [original_shape]
for i in range(1, num_octave):
    shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
    successive_shapes.append(shape)
successive_shapes = successive_shapes[::-1]
shrunk_original_img = tf.image.resize(original_img, successive_shapes[0])

img = tf.identity(original_img)  # Make a copy
for i, shape in enumerate(successive_shapes):
    print("Processing octave %d with shape %s" % (i, shape))
    img = tf.image.resize(img, shape)
    img = gradient_ascent_loop(
        img, iterations=iterations, learning_rate=step, max_loss=max_loss
    )
    upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape)
    same_size_original = tf.image.resize(original_img, shape)
    lost_detail = same_size_original - upscaled_shrunk_original_img

    img += lost_detail
    shrunk_original_img = tf.image.resize(original_img, shape)

keras.preprocessing.image.save_img(result_prefix + ".png", deprocess_image(img.numpy()
Processing octave 0 with shape (326, 489)
... Loss value at step 0: 0.44
... Loss value at step 1: 0.62
... Loss value at step 2: 0.90
... Loss value at step 3: 1.25
... Loss value at step 4: 1.57
... Loss value at step 5: 1.92
... Loss value at step 6: 2.20
... Loss value at step 7: 2.52
... Loss value at step 8: 2.82
... Loss value at step 9: 3.11
... Loss value at step 10: 3.39
... Loss value at step 11: 3.67
... Loss value at step 12: 3.93
... Loss value at step 13: 4.19
... Loss value at step 14: 4.42
... Loss value at step 15: 4.69
... Loss value at step 16: 4.93
... Loss value at step 17: 5.18
... Loss value at step 18: 5.47
... Loss value at step 19: 5.70
Processing octave 1 with shape (457, 685)
... Loss value at step 0: 1.08
... Loss value at step 1: 1.74
... Loss value at step 2: 2.30
... Loss value at step 3: 2.79
... Loss value at step 4: 3.21
... Loss value at step 5: 3.64
... Loss value at step 6: 4.04
... Loss value at step 7: 4.42
... Loss value at step 8: 4.78
... Loss value at step 9: 5.13
... Loss value at step 10: 5.49
... Loss value at step 11: 5.82
... Loss value at step 12: 6.14
... Loss value at step 13: 6.43
... Loss value at step 14: 6.78
... Loss value at step 15: 7.07
... Loss value at step 16: 7.36
... Loss value at step 17: 7.64
... Loss value at step 18: 7.94
... Loss value at step 19: 8.21
Processing octave 2 with shape (640, 960)
... Loss value at step 0: 1.25
... Loss value at step 1: 2.02
... Loss value at step 2: 2.65
... Loss value at step 3: 3.18
... Loss value at step 4: 3.68
... Loss value at step 5: 4.18
... Loss value at step 6: 4.63
... Loss value at step 7: 5.09
... Loss value at step 8: 5.49
... Loss value at step 9: 5.90
... Loss value at step 10: 6.24
... Loss value at step 11: 6.57
... Loss value at step 12: 6.84
... Loss value at step 13: 7.21
... Loss value at step 14: 7.59
... Loss value at step 15: 7.89
... Loss value at step 16: 8.18
... Loss value at step 17: 8.55
... Loss value at step 18: 8.84
... Loss value at step 19: 9.13

結果を表示します。

Hugging Face ハブにホストされている訓練済みモデルを使用して Hugging Face Spaces でデモを試すことができます。

display(Image(result_prefix + ".png"))

 

以上



クラスキャット

最近の投稿

  • LangGraph : 例題 : エージェント型 RAG
  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (21) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年7月
月 火 水 木 金 土 日
 123
45678910
11121314151617
18192021222324
25262728293031
« 6月   8月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme