Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras 2 : examples : 強化学習 – Actor Critic 法

Posted on 07/27/202207/27/2022 by Sales Information

Keras 2 : examples : 強化学習 – Actor Critic 法 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 07/27/2022 (keras 2.9.0)

* 本ページは、Keras の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Code examples : Reinforcement Learning – Actor Critic Method (Author: Apoorv Nandan)

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

Keras 2 : examples : 強化学習 – Actor Critic 法

Description : カートポール環境で Actor Critic 法を実装する。

 

イントロダクション

このスクリプトは CartPole-V0 環境上で Actor Critic 法の実装を示します。

 

Actor Critic 法

エージェントがアクションを取り環境内を移動するにつれ、それは環境の観測された状態を 2 つの可能な出力へマップすることを学習します :

  1. 推奨アクション : アクション空間の各アクションに対する確率値。この出力を担うエージェントの部分を アクター と呼称します。

  2. 将来の推定報酬 : 将来受け取ることが想定される総ての報酬の総和。この出力を担うエージェントの部分は critic (批評家) です。

エージェントと Critic は、アクターからの推奨アクションが報酬を最大化するように、それらのタスクを遂行することを学習します。

 

CartPole-V0

ポールは摩擦のない軌道上に置かれたカートに装着されます。エージェントはカートを動かすために力を加えなければなりません。ポールが直立したままの総ての時間ステップについて報酬が与えられます。従って、エージェントはポールが倒れないようにすることを学習しなければなりません。

 

References

  • CartPole
  • Actor Critic Method

 

セットアップ

import gym
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# Configuration parameters for the whole setup
seed = 42
gamma = 0.99  # Discount factor for past rewards
max_steps_per_episode = 10000
env = gym.make("CartPole-v0")  # Create the environment
env.seed(seed)
eps = np.finfo(np.float32).eps.item()  # Smallest number such that 1.0 + eps != 1.0

 

Actor Critic ネットワークの実装

このネットワークは 2 つの関数を学習します :

  1. アクター : これは入力として環境の状態を受け取り、アクション空間の各アクションに対する確率を返します。

  2. Critic : これは入力として環境の状態を受け取り、将来的な合計報酬の推定を返します。

私達の実装では、それらは初期化層を共有します。

num_inputs = 4
num_actions = 2
num_hidden = 128

inputs = layers.Input(shape=(num_inputs,))
common = layers.Dense(num_hidden, activation="relu")(inputs)
action = layers.Dense(num_actions, activation="softmax")(common)
critic = layers.Dense(1)(common)

model = keras.Model(inputs=inputs, outputs=[action, critic])

 

訓練

optimizer = keras.optimizers.Adam(learning_rate=0.01)
huber_loss = keras.losses.Huber()
action_probs_history = []
critic_value_history = []
rewards_history = []
running_reward = 0
episode_count = 0

while True:  # Run until solved
    state = env.reset()
    episode_reward = 0
    with tf.GradientTape() as tape:
        for timestep in range(1, max_steps_per_episode):
            # env.render(); Adding this line would show the attempts
            # of the agent in a pop up window.

            state = tf.convert_to_tensor(state)
            state = tf.expand_dims(state, 0)

            # Predict action probabilities and estimated future rewards
            # from environment state
            action_probs, critic_value = model(state)
            critic_value_history.append(critic_value[0, 0])

            # Sample action from action probability distribution
            action = np.random.choice(num_actions, p=np.squeeze(action_probs))
            action_probs_history.append(tf.math.log(action_probs[0, action]))

            # Apply the sampled action in our environment
            state, reward, done, _ = env.step(action)
            rewards_history.append(reward)
            episode_reward += reward

            if done:
                break

        # Update running reward to check condition for solving
        running_reward = 0.05 * episode_reward + (1 - 0.05) * running_reward

        # Calculate expected value from rewards
        # - At each timestep what was the total reward received after that timestep
        # - Rewards in the past are discounted by multiplying them with gamma
        # - These are the labels for our critic
        returns = []
        discounted_sum = 0
        for r in rewards_history[::-1]:
            discounted_sum = r + gamma * discounted_sum
            returns.insert(0, discounted_sum)

        # Normalize
        returns = np.array(returns)
        returns = (returns - np.mean(returns)) / (np.std(returns) + eps)
        returns = returns.tolist()

        # Calculating loss values to update our network
        history = zip(action_probs_history, critic_value_history, returns)
        actor_losses = []
        critic_losses = []
        for log_prob, value, ret in history:
            # At this point in history, the critic estimated that we would get a
            # total reward = `value` in the future. We took an action with log probability
            # of `log_prob` and ended up recieving a total reward = `ret`.
            # The actor must be updated so that it predicts an action that leads to
            # high rewards (compared to critic's estimate) with high probability.
            diff = ret - value
            actor_losses.append(-log_prob * diff)  # actor loss

            # The critic must be updated so that it predicts a better estimate of
            # the future rewards.
            critic_losses.append(
                huber_loss(tf.expand_dims(value, 0), tf.expand_dims(ret, 0))
            )

        # Backpropagation
        loss_value = sum(actor_losses) + sum(critic_losses)
        grads = tape.gradient(loss_value, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        # Clear the loss and reward history
        action_probs_history.clear()
        critic_value_history.clear()
        rewards_history.clear()

    # Log details
    episode_count += 1
    if episode_count % 10 == 0:
        template = "running reward: {:.2f} at episode {}"
        print(template.format(running_reward, episode_count))

    if running_reward > 195:  # Condition to consider the task solved
        print("Solved at episode {}!".format(episode_count))
        break
running reward: 8.82 at episode 10
running reward: 23.04 at episode 20
running reward: 28.41 at episode 30
running reward: 53.59 at episode 40
running reward: 53.71 at episode 50
running reward: 77.35 at episode 60
running reward: 74.76 at episode 70
running reward: 57.89 at episode 80
running reward: 46.59 at episode 90
running reward: 43.48 at episode 100
running reward: 63.77 at episode 110
running reward: 111.13 at episode 120
running reward: 142.77 at episode 130
running reward: 127.96 at episode 140
running reward: 113.92 at episode 150
running reward: 128.57 at episode 160
running reward: 139.95 at episode 170
running reward: 154.95 at episode 180
running reward: 171.45 at episode 190
running reward: 171.33 at episode 200
running reward: 177.74 at episode 210
running reward: 184.76 at episode 220
running reward: 190.88 at episode 230
running reward: 154.78 at episode 240
running reward: 114.38 at episode 250
running reward: 107.51 at episode 260
running reward: 128.99 at episode 270
running reward: 157.48 at episode 280
running reward: 174.54 at episode 290
running reward: 184.76 at episode 300
running reward: 190.87 at episode 310
running reward: 194.54 at episode 320
Solved at episode 322!

 

可視化

In early stages of training:

In later stages of training:

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント
  • LangGraph : Prebuilt エージェント : メモリ

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (19) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年7月
月 火 水 木 金 土 日
 123
45678910
11121314151617
18192021222324
25262728293031
« 6月   8月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme