Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Keras Stable Diffusion : 混合精度のパフォーマンス

Posted on 12/28/202212/31/2022 by Sales Information

Keras Stable Diffusion : 混合精度のパフォーマンス (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 12/28/2022

* 本ページは、github の divamgupta/stable-diffusion-tensorflow レポジトリの以下のドキュメント内の Colab ノートブックを翻訳した上でまとめ直したものです。一部は修正しています:

  • divamgupta/stable-diffusion-tensorflow/README.md

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

Keras Stable Diffusion : 混合精度のパフォーマンス

このノートブックでは Keras Stable Diffusion を混合精度で実行し、デフォルトの場合と画像生成時間を比較してみます。最初にデフォルト設定で実行時間を計測します。次に、混合精度の設定をしてから同一の画像生成を行ない、実行時間を比較します。

 

デフォルト環境の利用

最初はデフォルトのままで利用します。GPU は Tesla T4 です。

 

GPU 要件のインストール

!nvidia-smi
Tue Dec 27 16:56:19 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   67C    P0    27W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
!pip install git+https://github.com/divamgupta/stable-diffusion-tensorflow --upgrade --quiet
!pip install tensorflow tensorflow_addons ftfy --upgrade --quiet

 

Text2Image generator をインスタンス化して最初の画像を作成しましょう

まずは StableDiffusion インスタンスを作成します :

from stable_diffusion_tf.stable_diffusion import StableDiffusion
#from stable_diffusion_tf.stable_diffusion import Text2Image
from PIL import Image

generator = StableDiffusion(
#generator = Text2Image( 
    img_height=512,
    img_width=512,
    jit_compile=False,  # You can try True as well (different performance profile)
)

最初の画像生成は少しの追加のコンパイル・オーバーヘッドを持ちます。

img = generator.generate(
    "DSLR photograph of an astronaut riding a horse",
    num_steps=50,
    unconditional_guidance_scale=7.5,
    temperature=1,
    batch_size=1,
)
pil_img = Image.fromarray(img[0])
display(pil_img)
0   1: 100%|██████████| 50/50 [01:09<00:00,  1.38s/it]

CPU times: user 59.5 s, sys: 17.5 s, total: 1min 16s
Wall time: 1min 22s

2 回目以後は高速化されます :

%%time

img = generator.generate(
    "DSLR photograph of an astronaut riding a horse",
    num_steps=50,
    unconditional_guidance_scale=7.5,
    temperature=1,
    batch_size=1,
)
pil_img = Image.fromarray(img[0])
display(pil_img)
  0   1: 100%|██████████| 50/50 [00:55<00:00,  1.11s/it]

CPU times: user 37.4 s, sys: 14.7 s, total: 52.1 s
Wall time: 56.4 s

 

バッチ化生成を試しましょう

%%time

img = generator.generate(
    "An epic unicorn riding in the sunset, artstation concept art",
    num_steps=50,
    unconditional_guidance_scale=7.5,
    temperature=1,
    batch_size=4,
)
pil_img = Image.fromarray(img[0])
display(pil_img)
  0   1: 100%|██████████| 50/50 [02:46<00:00,  3.33s/it]

CPU times: user 59.5 s, sys: 5.75 s, total: 1min 5s
Wall time: 3min 10s

 

混合精度の利用

次に Colab 環境をリセットした上で、同じ条件で混合精度を利用してみます。GPU は同じく Tesla T4 です。

 

GPU 要件のインストール

!nvidia-smi
Tue Dec 27 16:56:19 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   67C    P0    27W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
!pip install git+https://github.com/divamgupta/stable-diffusion-tensorflow --upgrade --quiet
!pip install tensorflow tensorflow_addons ftfy --upgrade --quiet

 

混合精度の設定

混合精度の設定は簡単です :

from tensorflow import keras
keras.mixed_precision.set_global_policy("mixed_float16")

 

Text2Image generator をインスタンス化して最初の画像を作成しましょう

まずは StableDiffusion インスタンスを作成します :

from stable_diffusion_tf.stable_diffusion import StableDiffusion
#from stable_diffusion_tf.stable_diffusion import Text2Image
from PIL import Image

generator = StableDiffusion(
#generator = Text2Image( 
    img_height=512,
    img_width=512,
    jit_compile=False,  # You can try True as well (different performance profile)
)

最初の実行は少しの追加のコンパイル・オーバーヘッドを持ちます。

img = generator.generate(
    "DSLR photograph of an astronaut riding a horse",
    num_steps=50,
    unconditional_guidance_scale=7.5,
    temperature=1,
    batch_size=1,
)
pil_img = Image.fromarray(img[0])
display(pil_img)
  0   1: 100%|██████████| 50/50 [00:52<00:00,  1.05s/it]

CPU times: user 44.6 s, sys: 9.58 s, total: 54.1 s
Wall time: 1min 1s

2 回目以後は高速化されます :

%%time

img = generator.generate(
    "DSLR photograph of an astronaut riding a horse",
    num_steps=50,
    unconditional_guidance_scale=7.5,
    temperature=1,
    batch_size=1,
)
pil_img = Image.fromarray(img[0])
display(pil_img)
  0   1: 100%|██████████| 50/50 [00:36<00:00,  1.36it/s]

CPU times: user 25 s, sys: 8.04 s, total: 33 s
Wall time: 37.5 s

 

バッチ化生成を試しましょう

%%time

img = generator.generate(
    "An epic unicorn riding in the sunset, artstation concept art",
    num_steps=50,
    unconditional_guidance_scale=7.5,
    temperature=1,
    batch_size=4,
)
pil_img = Image.fromarray(img[0])
display(pil_img)
  0   1: 100%|██████████| 50/50 [01:43<00:00,  2.06s/it]

CPU times: user 51.4 s, sys: 4.09 s, total: 55.5 s
Wall time: 1min 57s

 

まとめ

デフォルト環境

  • 1 回目 : 1min 22s
  • 2 回目 : 56.4 s
  • バッチ処理 (4 枚) : 3min 10s (47.5 s/image)

 
混合精度を利用した場合

  • 1 回目 : 1min 1s
  • 2 回目 : 37.5 s
  • バッチ処理 (4 枚) : 1min 57s (29.25 s/image)

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント
  • LangGraph : Prebuilt エージェント : メモリ

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (19) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2022年12月
月 火 水 木 金 土 日
 1234
567891011
12131415161718
19202122232425
262728293031  
« 9月   4月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme