Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

OpenAI Cookbook : DALL·E と Segment Anything で動的マスクを作成する方法

Posted on 08/15/202308/15/2023 by Sales Information

OpenAI Cookbook examples : DALL-E : DALL·E と Segment Anything で動的マスクを作成する方法 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 08/15/2023

* 本ページは、OpenAI Cookbook レポジトリの以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • examples : DALL-E : How to create dynamic masks with DALL·E and Segment Anything

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

 

OpenAI Cookbook : DALL-E : DALL·E と Segment Anything で動的マスクを作成する方法

Segment Anything は画像の一部を選択するために使用できる Meta のモデルです。画像の指定された部分をインペイントする DALL·E の機能と組み合わせて、Segment Anything を使用して変更したい画像の任意の一部を簡単に選択することができます。

このノートブックでは、これらのツールを使用してファッションデザイナーになり、デジタルモデルの衣服をオリジナルの適合した (tailored) 創作と動的に置き換えます。ノートブックはこのフローに従います :

  • セットアップ : ライブラリと場所のディレクトリの初期化。
  • 元画像の生成 : そこから動的マスクを作成する元の画像を作成します。
  • マスクの生成 : Segment Anything を使用して動的マスクを作成する。
  • 新しい画像の作成 : マスクされた領域が新しいプロンプトでインペイントされた新しい画像の生成。

 

セットアップ

開始するには、Meta によりオープンソース化された Segment Anything モデル (SAM) を使用する 手順 に従う必要があります。2023年5月の時点で、主要ステップは :

  • Pytorch (version 1.7+) のインストール

  • “pip install git+https://github.com/facebookresearch/segment-anything.git” を使用してライブラリをインストールします。

  • “pip install opencv-python pycocotools matplotlib onnxruntime onnx” を使用して依存関係をインストールします。

  • 使用する モデルチェックポイント をダウンロードします (デフォルトサイズは 2.4 GB)。
!pip install torch torchvision torchaudio
!pip install git+https://github.com/facebookresearch/segment-anything.git
!pip install opencv-python pycocotools matplotlib onnxruntime onnx
!pip install requests
!pip install openai
!pip install numpy
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from matplotlib import rcParams
import numpy as np
import openai
import os
from PIL import Image
import requests
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
import torch

# Set directories for generation images and edit images
base_image_dir = os.path.join("images", "01_generations")
mask_dir = os.path.join("images", "02_masks")
edit_image_dir = os.path.join("images", "03_edits")

# Point to your downloaded SAM model
sam_model_filepath = "./sam_vit_h_4b8939.pth"

# Initiate SAM model
sam = sam_model_registry["default"](checkpoint=sam_model_filepath)

 

元画像の生成

最初に元の画像を作成します、これからマスクを生成します。

def process_dalle_images(response, filename, image_dir):
    # save the images
    urls = [datum["url"] for datum in response["data"]]  # extract URLs
    images = [requests.get(url).content for url in urls]  # download images
    image_names = [f"{filename}_{i + 1}.png" for i in range(len(images))]  # create names
    filepaths = [os.path.join(image_dir, name) for name in image_names]  # create filepaths
    for image, filepath in zip(images, filepaths):  # loop through the variations
        with open(filepath, "wb") as image_file:  # open the file
            image_file.write(image)  # write the image to the file

    return filepaths
dalle_prompt = '''
Full length, zoomed out photo of our premium Lederhosen-inspired jumpsuit. 
Showcase the intricate hand-stitched details and high-quality leather, while highlighting the perfect blend of Austrian heritage and modern fashion. 
This piece appeals to a sophisticated, trendsetting audience who appreciates cultural fusion and innovative design.
'''
# Generate your images
generation_response = openai.Image.create(
    prompt=dalle_prompt,
    n=3,
    size="1024x1024",
    response_format="url",
)
filepaths = process_dalle_images(generation_response, "generation", base_image_dir)
# print the new generations
for filepath in filepaths:
    print(filepath)
    display(Image.open(filepath))
images/01_generations/generation_1.png

images/01_generations/generation_2.png

images/01_generations/generation_3.png

 

マスクの生成

次に画像の一つをロードしてマスクを生成します。

このデモでは、そこからマスクを生成する画像の点を「クリック」するような UX を選択しています。ただし、画像に対するすべての可能性のあるマスクを生成し、ボックスを描く方法、そして他の有用なアプローチを示す、Meta が提供する サンプルノートブック があります。

# Pick one of your generated images
chosen_image = "images/01_generations/generation_2.png"
chosen_image
'images/01_generations/generation_2.png'
# Function to display mask using matplotlib
def show_mask(mask, ax):
    color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


# Function to display where we've "clicked"
def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    ax.scatter(
        pos_points[:, 0],
        pos_points[:, 1],
        color="green",
        marker="*",
        s=marker_size,
        edgecolor="white",
        linewidth=1.25,
    )
    ax.scatter(
        neg_points[:, 0],
        neg_points[:, 1],
        color="red",
        marker="*",
        s=marker_size,
        edgecolor="white",
        linewidth=1.25,
    )
# Load chosen image using opencv
image = cv2.imread(chosen_image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# Display our chosen image
plt.figure(figsize=(10, 10))
plt.imshow(image)
plt.axis("on")
plt.show()

# Set the pixel coordinates for our "click" to assign masks
input_point = np.array([[525, 325]])
input_label = np.array([1])

# Display the point we've clicked on
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_points(input_point, input_label, plt.gca())
plt.axis("on")
plt.show()

# Initiate predictor with Segment Anything model
predictor = SamPredictor(sam)
predictor.set_image(image)

# Use the predictor to gather masks for the point we clicked
masks, scores, logits = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    multimask_output=True,
)

# Check the shape - should be three masks of the same dimensions as our image
masks.shape
(3, 1024, 1024)
# Display the possible masks we can select along with their confidence
for i, (mask, score) in enumerate(zip(masks, scores)):
    plt.figure(figsize=(10, 10))
    plt.imshow(image)
    show_mask(mask, plt.gca())
    show_points(input_point, input_label, plt.gca())
    plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
    plt.axis("off")
    plt.show()

# Choose which mask you'd like to use
chosen_mask = masks[1]

# We'll now reverse the mask so that it is clear and everything else is white
chosen_mask = chosen_mask.astype("uint8")
chosen_mask[chosen_mask != 0] = 255
chosen_mask[chosen_mask == 0] = 1
chosen_mask[chosen_mask == 255] = 0
chosen_mask[chosen_mask == 1] = 255
# create a base blank mask
width = 1024
height = 1024
mask = Image.new("RGBA", (width, height), (0, 0, 0, 1))  # create an opaque image mask

# Convert mask back to pixels to add our mask replacing the third dimension
pix = np.array(mask)
pix[:, :, 3] = chosen_mask

# Convert pixels back to an RGBA image and display
new_mask = Image.fromarray(pix, "RGBA")
new_mask

# We'll save this mask for re-use for our edit
new_mask.save(os.path.join(mask_dir, "new_mask.png"))

 

新しい画像の作成

そして元の画像をマスクと DALLE の編集エンドポイントと組み合わせて、新しいプロンプトに従って透明な領域をインペイントします。

# edit an image

# call the OpenAI API
edit_response = openai.Image.create_edit(
    image=open(chosen_image, "rb"),  # from the generation section
    mask=open(os.path.join(mask_dir, "new_mask.png"), "rb"),  # from right above
    prompt="Brilliant leather Lederhosen with a formal look, detailed, intricate, photorealistic",  # provide a prompt to fill the space
    n=3,
    size="1024x1024",
    response_format="url",
)

edit_filepaths = process_dalle_images(edit_response, "edits", edit_image_dir)
# Display your beautiful creations!
%matplotlib inline

# figure size in inches optional
rcParams["figure.figsize"] = 11 ,8

# read images
img_A = mpimg.imread(edit_filepaths[0])
img_B = mpimg.imread(edit_filepaths[1])
img_C = mpimg.imread(edit_filepaths[2])

# display images
fig, ax = plt.subplots(1,3)
[a.axis("off") for a in ax]
ax[0].imshow(img_A)
ax[1].imshow(img_B)
ax[2].imshow(img_C)
<matplotlib.image.AxesImage at 0x16d8a63b0>

Beautiful!

Now you too can easily create dynamic masks to extend your images – enjoy the APIs, and please share what you build!

 

以上



クラスキャット

最近の投稿

  • LangGraph 0.5 : エージェント開発 : エージェント・アーキテクチャ
  • LangGraph 0.5 : エージェント開発 : ワークフローとエージェント
  • LangGraph 0.5 : エージェント開発 : エージェントの実行
  • LangGraph 0.5 : エージェント開発 : prebuilt コンポーネントを使用したエージェント開発
  • LangGraph 0.5 : Get started : ローカルサーバの実行

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) LangGraph 0.5 (9) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2023年8月
月 火 水 木 金 土 日
 123456
78910111213
14151617181920
21222324252627
28293031  
« 7月   9月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme