Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

🦜️🔗 LangChain : モジュール : モデル I/O – 言語モデル : LLM : ストリーミング / トークン使用量の追跡

Posted on 08/29/202308/31/2023 by Sales Information

🦜️🔗LangChain : モジュール : モデル I/O – 言語モデル : LLM : ストリーミング / トークン使用量の追跡 (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 08/29/2023

* 本ページは、LangChain の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Modules : Model I/O – Language models : LLMs : Streaming
  • Modules : Model I/O – Language models : LLMs : Tracking token usage

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

🦜️🔗 LangChain : モジュール : モデル I/O – 言語モデル : LLM : ストリーミング

一部の LLM はストリーミングレスポンスを提供します。これは返されるレスポンス全体を待つ代わりに、レスポンスが利用可能になればすぐにそれを処理し始めることができることを意味します。これはレスポンスが生成されながらそれをユーザに表示したい場合や、生成されながらレスポンスを処理したい場合に有用です。

現在、OpenAI, ChatOpenAI, ChatAnthropic, Hugging Face テキスト生成推論と Replicate を含みますがこれらに制限されない広範囲な LLM に対してストリーミングをサポートしています。この機能は殆どのモデルに必要なもとを提供できるように拡張されました。ストリーミングを利用するには、on_llm_new_token を実装する CallbackHandler を使用します。この例では StreamingStdOutCallbackHandler を使用しています。

from langchain.llms import OpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler


llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = llm("Write me a song about sparkling water.")
    Verse 1
    I'm sippin' on sparkling water,
    It's so refreshing and light,
    It's the perfect way to quench my thirst
    On a hot summer night.
    
    Chorus
    Sparkling water, sparkling water,
    It's the best way to stay hydrated,
    It's so crisp and so clean,
    It's the perfect way to stay refreshed.
    
    Verse 2
    I'm sippin' on sparkling water,
    It's so bubbly and bright,
    It's the perfect way to cool me down
    On a hot summer night.
    
    Chorus
    Sparkling water, sparkling water,
    It's the best way to stay hydrated,
    It's so crisp and so clean,
    It's the perfect way to stay refreshed.
    
    Verse 3
    I'm sippin' on sparkling water,
    It's so light and so clear,
    It's the perfect way to keep me cool
    On a hot summer night.
    
    Chorus
    Sparkling water, sparkling water,
    It's the best way to stay hydrated,
    It's so crisp and so clean,
    It's the perfect way to stay refreshed.

generate を使用する場合でもエンド LLMResult へのアクセスを依然として持ちます。けれども、token_usage は現在ストリーミングに対してサポートされていません。

llm.generate(["Tell me a joke."])
    Q: What did the fish say when it hit the wall?
    A: Dam!


    LLMResult(generations=[[Generation(text='\n\nQ: What did the fish say when it hit the wall?\nA: Dam!', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {}, 'model_name': 'text-davinci-003'})

 

🦜️🔗 LangChain : モジュール : モデル I/O – 言語モデル : LLM : トークン使用量の追跡

このノートブックは特定の呼び出しに対するトークン使用量を追跡する方法を調べます。それは現在 OpenAI API に対して実装されているのみです。

最初に単一の LLM 呼び出しに対するトークン使用量を追跡する非常に単純な例を見ましょう。

from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback

API リファレンス:

  • OpenAI
  • get_openai_callback
llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2)
with get_openai_callback() as cb:
    result = llm("Tell me a joke")
    print(cb)
    Tokens Used: 42
        Prompt Tokens: 4
        Completion Tokens: 38
    Successful Requests: 1
    Total Cost (USD): $0.00084

コンテキストマネージャ内のすべてのものが追跡されます。ここに、シークエンスの複数の呼び出しを追跡するためにそれを使用する例があります。

with get_openai_callback() as cb:
    result = llm("Tell me a joke")
    result2 = llm("Tell me a joke")
    print(cb.total_tokens)
    91

内部に複数のステップを持つチェインやエージェントが使用される場合、それらのステップすべてを追跡します。

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(
    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)

API リファレンス :

  • load_tools
  • initialize_agent
  • AgentType
  • OpenAI
with get_openai_callback() as cb:
    response = agent.run(
        "Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?"
    )
    print(f"Total Tokens: {cb.total_tokens}")
    print(f"Prompt Tokens: {cb.prompt_tokens}")
    print(f"Completion Tokens: {cb.completion_tokens}")
    print(f"Total Cost (USD): ${cb.total_cost}")
    
    
    > Entering new AgentExecutor chain...
     I need to find out who Olivia Wilde's boyfriend is and then calculate his age raised to the 0.23 power.
    Action: Search
    Action Input: "Olivia Wilde boyfriend"
    Observation: Sudeikis and Wilde's relationship ended in November 2020. Wilde was publicly served with court documents regarding child custody while she was presenting Don't Worry Darling at CinemaCon 2022. In January 2021, Wilde began dating singer Harry Styles after meeting during the filming of Don't Worry Darling.
    Thought: I need to find out Harry Styles' age.
    Action: Search
    Action Input: "Harry Styles age"
    Observation: 29 years
    Thought: I need to calculate 29 raised to the 0.23 power.
    Action: Calculator
    Action Input: 29^0.23
    Observation: Answer: 2.169459462491557
    
    Thought: I now know the final answer.
    Final Answer: Harry Styles, Olivia Wilde's boyfriend, is 29 years old and his age raised to the 0.23 power is 2.169459462491557.
    
    > Finished chain.
    Total Tokens: 1506
    Prompt Tokens: 1350
    Completion Tokens: 156
    Total Cost (USD): $0.03012

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2023年8月
月 火 水 木 金 土 日
 123456
78910111213
14151617181920
21222324252627
28293031  
« 7月   9月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme