Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

🦜️🔗 LangChain : モジュール : モデル I/O – 出力パーサー : 再試行パーサー / 構造化出力パーサー

Posted on 09/01/2023 by Sales Information

🦜️🔗LangChain : モジュール : モデル I/O – 出力パーサー : 再試行パーサー / 構造化出力パーサー (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 09/01/2023

* 本ページは、LangChain の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Modules : Model I/O – Output parsers : Retry parser
  • Modules : Model I/O – Output parsers : Structured output parser

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス

◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能研究開発支援
    1. 人工知能研修サービス(経営者層向けオンサイト研修)
    2. テクニカルコンサルティングサービス
    3. 実証実験(プロトタイプ構築)
    4. アプリケーションへの実装

  • 人工知能研修サービス

  • PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

  • 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
  • sales-info@classcat.com  ;  Web: www.classcat.com  ;   ClassCatJP

 

🦜️🔗 LangChain : モジュール : モデル I/O – 出力パーサー : 再試行パーサー

ある場合には出力を見るだけでパーシングの誤りを修正することが可能ですが、別の場合にはできません。この例は、出力が正しくないフォーマットであるだけでなく、部分的に完成している場合です。以下のサンプルを考えます。

from langchain.prompts import (
    PromptTemplate,
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.output_parsers import (
    PydanticOutputParser,
    OutputFixingParser,
    RetryOutputParser,
)
from pydantic import BaseModel, Field, validator
from typing import List
  • PromptTemplate
  • ChatPromptTemplate
  • HumanMessagePromptTemplate
  • OpenAI
  • ChatOpenAI
  • PydanticOutputParser
  • OutputFixingParser
  • RetryOutputParser
template = """Based on the user question, provide an Action and Action Input for what step should be taken.
{format_instructions}
Question: {query}
Response:"""


class Action(BaseModel):
    action: str = Field(description="action to take")
    action_input: str = Field(description="input to the action")


parser = PydanticOutputParser(pydantic_object=Action)
prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)
prompt_value = prompt.format_prompt(query="who is leo di caprios gf?")
bad_response = '{"action": "search"}'

このレスポンスをそのままパースしようとすると、エラーを得ます。

parser.parse(bad_response)
    ---------------------------------------------------------------------------

    ValidationError                           Traceback (most recent call last)

    File ~/workplace/langchain/langchain/output_parsers/pydantic.py:24, in PydanticOutputParser.parse(self, text)
         23     json_object = json.loads(json_str)
    ---> 24     return self.pydantic_object.parse_obj(json_object)
         26 except (json.JSONDecodeError, ValidationError) as e:


    File ~/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pydantic/main.py:527, in pydantic.main.BaseModel.parse_obj()


    File ~/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pydantic/main.py:342, in pydantic.main.BaseModel.__init__()


    ValidationError: 1 validation error for Action
    action_input
      field required (type=value_error.missing)

    
    During handling of the above exception, another exception occurred:


    OutputParserException                     Traceback (most recent call last)

    Cell In[6], line 1
    ----> 1 parser.parse(bad_response)


    File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text)
         27 name = self.pydantic_object.__name__
         28 msg = f"Failed to parse {name} from completion {text}. Got: {e}"
    ---> 29 raise OutputParserException(msg)


    OutputParserException: Failed to parse Action from completion {"action": "search"}. Got: 1 validation error for Action
    action_input
      field required (type=value_error.missing)

このエラーを修正するために OutputFixingParser を使用しよとすると、それは混乱するでしょう – つまり、それはアクション入力に対して実際に何を配置すればよいかわかりません。

fix_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI())
fix_parser.parse(bad_response)
    Action(action='search', action_input='')

代わりに、RetryOutputParser が使用できます、これはより良いレスポンスを取得するように再試行するためにプロンプト (そして元の出力) を渡します。

from langchain.output_parsers import RetryWithErrorOutputParser

API リファレンス :

  • RetryWithErrorOutputParser
retry_parser = RetryWithErrorOutputParser.from_llm(
    parser=parser, llm=OpenAI(temperature=0)
)
retry_parser.parse_with_prompt(bad_response, prompt_value)
    Action(action='search', action_input='who is leo di caprios gf?')

 

🦜️🔗 LangChain : モジュール : モデル I/O – 出力パーサー : 構造化出力パーサー

この出力パーサーは複数のフィールドを返したいときに使用できます。Pydantic/JSON パーサーがより強力である一方で、テキストフィールドだけを持つデータ構造で最初は実験しました。

from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI

ここでは受け取りたいレスポンス・スキーマを定義します。

response_schemas = [
    ResponseSchema(name="answer", description="answer to the user's question"),
    ResponseSchema(name="source", description="source used to answer the user's question, should be a website.")
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

そしてレスポンスがどのように整形されるべきかのインストラクションを含む文字列を取得してから、それをプロンプトに挿入します。

format_instructions = output_parser.get_format_instructions()
prompt = PromptTemplate(
    template="answer the users question as best as possible.\n{format_instructions}\n{question}",
    input_variables=["question"],
    partial_variables={"format_instructions": format_instructions}
)

これを使用して言語モデルに送るためにプロンプトをフォーマットして、返された結果をパースすることができます。

model = OpenAI(temperature=0)
_input = prompt.format_prompt(question="what's the capital of france?")
output = model(_input.to_string())
output_parser.parse(output)
    {'answer': 'Paris',
     'source': 'https://www.worldatlas.com/articles/what-is-the-capital-of-france.html'}

And here’s an example of using this in a chat model

chat_model = ChatOpenAI(temperature=0)
prompt = ChatPromptTemplate(
    messages=[
        HumanMessagePromptTemplate.from_template("answer the users question as best as possible.\n{format_instructions}\n{question}")  
    ],
    input_variables=["question"],
    partial_variables={"format_instructions": format_instructions}
)
_input = prompt.format_prompt(question="what's the capital of france?")
output = chat_model(_input.to_messages())
output_parser.parse(output.content)
    {'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント
  • LangGraph : Prebuilt エージェント : メモリ

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (19) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2023年9月
月 火 水 木 金 土 日
 123
45678910
11121314151617
18192021222324
252627282930  
« 8月   10月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme