Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

LangGraph : Prebuilt エージェント : Human-in-the-loop

Posted on 06/14/2025 by Masashi Okumura

エージェントでツール呼び出しをレビュー、編集、承認するには、LangGraph の組み込み Human-In-the-Loop (HIL) 機能、特に interrupt() プリミティブを使用できます。LangGraph は人間の入力を受け取るまで、実行を 無期限に一時停止することを可能にします。

LangGraph : Prebuilt エージェント : Human-in-the-loop

作成 : クラスキャット・セールスインフォメーション
作成日時 : 06/14/2025

* 本記事は langchain-ai.github.io の以下のページを独自に翻訳した上で、補足説明を加えてまとめ直しています :

  • Prebuilt agents : Human-in-the-loop

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス ⭐️ リニューアルしました 😉

◆ クラスキャット は人工知能に関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能導入個別相談会(無償)実施中! [詳細]

  • 人工知能研究開発支援 [詳細]
    1. 自社特有情報を含むチャットボット構築支援
    2. 画像認識 (医療系含む) / 画像生成

  • PoC(概念実証)を失敗させないための支援 [詳細]

◆ お問合せ : 下記までお願いします。

  • クラスキャット セールス・インフォメーション
  • sales-info@classcat.com
  • ClassCatJP

 

LangGraph : Get started : Prebuilt エージェント : Human-in-the-loop

エージェントでツール呼び出しをレビュー、編集、そして承認するには、LangGraph の組み込み Human-In-the-Loop (HIL) 機能、特に interrupt() プリミティブを使用できます。

LangGraph は、人間の入力を受け取るまで、実行を 無期限に – 数分、数時間、あるいは数日間でも – 一時停止することを可能にします。

これは、エージェント状態が データベースにチェックポイントされる ために可能です、これによりシステムが実行コンテキストを永続化して、後で中断したところからワークフローを再開して継続することを可能にします。

human-in-the-loop コンセプトを深く理解するには、concept ガイド をご覧ください。


人間はエージェントの出力を (続行する前に) レビューして編集できます。これは、リクエストされたツール呼び出しがセンシティブであったり人間の監視を必要とするかもしれないアプリケーションでは特に重要です。

 

ツール呼び出しのレビュー

ツールに人間による承認ステップを追加するには :

  1. ツールで interrupt() を使用して実行を一時停止する。

  2. 人間の入力に基づいて Command(resume=…) で再開して続行する。

API リファレンス: InMemorySaver | interrupt | create_react_agent

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.types import interrupt
from langgraph.prebuilt import create_react_agent

# An example of a sensitive tool that requires human review / approval
def book_hotel(hotel_name: str):
    """Book a hotel"""
    response = interrupt(  
        f"Trying to call `book_hotel` with args {{'hotel_name': {hotel_name}}}. "
        "Please approve or suggest edits."
    )
    if response["type"] == "accept":
        pass
    elif response["type"] == "edit":
        hotel_name = response["args"]["hotel_name"]
    else:
        raise ValueError(f"Unknown response type: {response['type']}")
    return f"Successfully booked a stay at {hotel_name}."

checkpointer = InMemorySaver() 

agent = create_react_agent(
    model="anthropic:claude-3-5-sonnet-latest",
    tools=[book_hotel],
    checkpointer=checkpointer, 
)

stream() メソッドを使用してエージェントを実行し、config オブジェクトを渡してスレッド ID を指定します。これは、エージェントが次回の呼び出しで同じ会話を再開させることを可能にします。

config = {
   "configurable": {
      "thread_id": "1"
   }
}

for chunk in agent.stream(
    {"messages": [{"role": "user", "content": "book a stay at McKittrick hotel"}]},
    config
):
    print(chunk)
    print("\n")

人間の入力に基づいて、エージェントを Command(resume=…) で再開して続行させます。

from langgraph.types import Command

for chunk in agent.stream(
    Command(resume={"type": "accept"}),  
    # Command(resume={"type": "edit", "args": {"hotel_name": "McKittrick Hotel"}}),
    config
):
    print(chunk)
    print("\n")

 

Agent Inbox での使用

任意のツールに interrupt を追加するためにラッパーを作成できます。

下の例は Agent Inbox UI と Agent Chat UI と互換なリファレンス実装を提供しています。

Wrapper that adds human-in-the-loop to any tool

from typing import Callable
from langchain_core.tools import BaseTool, tool as create_tool
from langchain_core.runnables import RunnableConfig
from langgraph.types import interrupt 
from langgraph.prebuilt.interrupt import HumanInterruptConfig, HumanInterrupt

def add_human_in_the_loop(
    tool: Callable | BaseTool,
    *,
    interrupt_config: HumanInterruptConfig = None,
) -> BaseTool:
    """Wrap a tool to support human-in-the-loop review.""" 
    if not isinstance(tool, BaseTool):
        tool = create_tool(tool)

    if interrupt_config is None:
        interrupt_config = {
            "allow_accept": True,
            "allow_edit": True,
            "allow_respond": True,
        }

    @create_tool(  
        tool.name,
        description=tool.description,
        args_schema=tool.args_schema
    )
    def call_tool_with_interrupt(config: RunnableConfig, **tool_input):
        request: HumanInterrupt = {
            "action_request": {
                "action": tool.name,
                "args": tool_input
            },
            "config": interrupt_config,
            "description": "Please review the tool call"
        }
        response = interrupt([request])[0]  
        # approve the tool call
        if response["type"] == "accept":
            tool_response = tool.invoke(tool_input, config)
        # update tool call args
        elif response["type"] == "edit":
            tool_input = response["args"]["args"]
            tool_response = tool.invoke(tool_input, config)
        # respond to the LLM with user feedback
        elif response["type"] == "response":
            user_feedback = response["args"]
            tool_response = user_feedback
        else:
            raise ValueError(f"Unsupported interrupt response type: {response['type']}")

        return tool_response

    return call_tool_with_interrupt

任意のツールに interrupt() を追加するために add_human_in_the_loop ラッパーを使用できます、この場合、ツール内にそれを追加する必要はありません :

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.prebuilt import create_react_agent

checkpointer = InMemorySaver()

def book_hotel(hotel_name: str):
   """Book a hotel"""
   return f"Successfully booked a stay at {hotel_name}."


agent = create_react_agent(
    model="anthropic:claude-3-5-sonnet-latest",
    tools=[
        add_human_in_the_loop(book_hotel), 
    ],
    checkpointer=checkpointer,
)

config = {"configurable": {"thread_id": "1"}}

# Run the agent
for chunk in agent.stream(
    {"messages": [{"role": "user", "content": "book a stay at McKittrick hotel"}]},
    config
):
    print(chunk)
    print("\n")

人間の入力に基づいて Command(resume=…) でエージェントを再開して続行します。

from langgraph.types import Command 

for chunk in agent.stream(
    Command(resume=[{"type": "accept"}]),
    # Command(resume=[{"type": "edit", "args": {"args": {"hotel_name": "McKittrick Hotel"}}}]),
    config
):
    print(chunk)
    print("\n")

 

追加リソース

  • Human-in-the-loop in LangGraph

 

以上



クラスキャット

最近の投稿

  • LangGraph 0.5 : エージェント開発 : ワークフローとエージェント
  • LangGraph 0.5 : エージェント開発 : エージェントの実行
  • LangGraph 0.5 : エージェント開発 : prebuilt コンポーネントを使用したエージェント開発
  • LangGraph 0.5 : Get started : ローカルサーバの実行
  • LangGraph 0.5 on Colab : Get started : human-in-the-loop 制御の追加

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) LangGraph 0.5 (8) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2025年6月
月 火 水 木 金 土 日
 1
2345678
9101112131415
16171819202122
23242526272829
30  
« 5月   7月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme