Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

LangGraph Platform : Get started : クイックスタート

Posted on 06/20/2025 by Masashi Okumura

このガイドは LangGraph アプリケーションをローカルで実行する方法を示します。

LangGraph Platform : Get started : クイックスタート

作成 : クラスキャット・セールスインフォメーション
作成日時 : 06/20/2025

* 本記事は langchain-ai.github.io の以下のページを独自に翻訳した上で、補足説明を加えてまとめ直しています :

  • : LangGraph Platform : Get started : Quickstart

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス ⭐️ リニューアルしました 😉

◆ クラスキャット は人工知能に関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能導入個別相談会(無償)実施中! [詳細]

  • 人工知能研究開発支援 [詳細]
    1. 自社特有情報を含むチャットボット構築支援
    2. 画像認識 (医療系含む) / 画像生成

  • PoC(概念実証)を失敗させないための支援 [詳細]

◆ お問合せ : 下記までお願いします。

  • クラスキャット セールス・インフォメーション
  • sales-info@classcat.com
  • ClassCatJP

 

 

LangGraph Platform : Get started : クイックスタート

このガイドは LangGraph アプリケーションをローカルで実行する方法を示します。

 

前提条件

始める前に、次を持っていることを確認してください :

  • LangSmith 用 API キー – サインアップは無料です

 

1. LangGraph CLI のインストール

Python サーバ

# Python >= 3.11 is required.

pip install --upgrade "langgraph-cli[inmem]"

Node サーバ

npx @langchain/langgraph-cli

 

2. LangGraph アプリケーションの作成

new-langgraph-project-python テンプレート または new-langgraph-project-js テンプレート から新しいアプリケーションを作成します。このテンプレートは独自ロジックで拡張可能な単一ノード・アプリケーションを実演します。

Python サーバ

langgraph new path/to/your/app --template new-langgraph-project-python

Node サーバ

langgraph new path/to/your/app --template new-langgraph-project-js

追加のテンプレート : If you use langgraph new without specifying a template, you will be presented with an interactive menu that will allow you to choose from a list of available templates.

 

3. 依存関係のインストール

新しい LangGraph アプリケーションのルートで、edit モードで依存関係をインストールすると、ローカルの変更がサーバにより使用されます :

Python サーバ

cd path/to/your/app
pip install -e .

Node サーバ

cd path/to/your/app
yarn install

 

4. .env ファイルの作成

新しい LangGraph アプリケーションのルートで .env.example が見つかります。新しい LangGraph アプリケーションのルートで .env ファイルを作成して、.env.example ファイルの内容をそれにコピーして、必要な API キーを入力します :

LANGSMITH_API_KEY=lsv2...

 

5. LangGraph サーバの起動

LangGraph API server をローカルで起動します :

Python サーバ

langgraph dev

Node サーバ

npx @langchain/langgraph-cli dev
>    Ready!
>
>    - API: [http://localhost:2024](http://localhost:2024/)
>
>    - Docs: http://localhost:2024/docs
>
>    - LangGraph Studio Web UI: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024

“langgraph dev” コマンドは in-memory モードで LangGraph サーバを起動します。このモードは開発とテスト目的に適しています。本番環境での利用には、永続化ストレージ・バックエンドへのアクセスを備えた LangGraph Server を配備します。For more information, see Deployment options.

 

6. アプリケーションを LangGraph Studio でテストする

LangGraph Studio は、LangGraph API に接続してローカルでアプリケーションを視覚化、操作、デバッグできる専用の UI です。”langgraph dev” コマンドの出力で提供される URL にアクセスすることで LangGraph Studio でグラフをテストします :

  • LangGraph Studio Web UI: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024

For a LangGraph Server running on a custom host/port, update the baseURL parameter.

 

7. Test the API

Python SDK (非同期)

  1. LangGraph Python SDK をインストールします :
    pip install langgraph-sdk
    

     

  2. メッセージをアシスタントに送信します (threadless 実行) :
    from langgraph_sdk import get_client
    import asyncio
    
    client = get_client(url="http://localhost:2024")
    
    async def main():
        async for chunk in client.runs.stream(
            None,  # Threadless run
            "agent", # Name of assistant. Defined in langgraph.json.
            input={
            "messages": [{
                "role": "human",
                "content": "What is LangGraph?",
                }],
            },
        ):
            print(f"Receiving new event of type: {chunk.event}...")
            print(chunk.data)
            print("\n\n")
    
    asyncio.run(main())
    

 
Python SDK (同期)

  1. LangGraph Python SDK をインストールします :
    pip install langgraph-sdk
    

     

  2. メッセージをアシスタントに送信します (threadless 実行) :
    from langgraph_sdk import get_sync_client
    
    client = get_sync_client(url="http://localhost:2024")
    
    for chunk in client.runs.stream(
        None,  # Threadless run
        "agent", # Name of assistant. Defined in langgraph.json.
        input={
            "messages": [{
                "role": "human",
                "content": "What is LangGraph?",
            }],
        },
        stream_mode="messages-tuple",
    ):
        print(f"Receiving new event of type: {chunk.event}...")
        print(chunk.data)
        print("\n\n")
    

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2025年6月
月 火 水 木 金 土 日
 1
2345678
9101112131415
16171819202122
23242526272829
30  
« 5月    
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme