Skip to content

ClassCat® AI Research

クラスキャット – Agno, AgentOS, MCP, LangChain/LangGraph, CrewAI

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Cursor 再入門: エージェント – チャット: コマンド

Posted on 11/27/202511/27/2025 by Masashi Okumura

カスタムコマンドは、チャット入力ボックス内で単純な / プレフィックスでトリガーできる再利用可能なワークフローを作成することを可能にします。これらのコマンドはチーム全体のプロセスを標準化し、共通のタスクを効率的にするのに役立ちます。

Cursor 再入門: コア: エージェント – チャット: コマンド

作成 : Masashi Okumura (@classcat.com)
作成日時 : 11/27/2025
バージョン : 2.1.39

* 本記事は cursor.com/docs の以下のページを参考にしています :

  • Core : Agent – Chat : Commands

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット AI 研究開発支援サービス ⭐️ 創立30周年(30th Anniversary)🎉💐

◆ クラスキャット は AI に関する各種サービスを提供しています。お気軽にご相談ください :

  • AI 研究開発支援 [詳細]

    1. AI エージェント構築支援
    2. 画像認識 (医療系含む) / 画像生成

  • AI 導入個別相談会(無償)実施中! [詳細]

  • PoC(概念実証)を失敗させないための支援 [詳細]

◆ お問合せ : 下記までお願いします。

  • クラスキャット セールス・インフォメーション
  • sales-info@classcat.com
  • ClassCatJP

 

 

Cursor 再入門: コア: エージェント – チャット: コマンド

カスタムコマンドは、チャット入力ボックス内で単純な / プレフィックスでトリガーできる再利用可能なワークフローを作成することを可能にします。これらのコマンドはチーム全体のプロセスを標準化し、共通のタスクを効率的にするのに役立ちます。

ℹ️ Commands are currently in beta. The feature and syntax may change as we continue to improve it.

 

コマンドの仕組み

コマンドは、3 つの場所に保存できる、plain な Markdown フアイルとして定義できます :

  1. プロジェクトコマンド : プロジェクトの .cursor/commands ディレクトリに保存されます。

  2. グローバルコマンド : ホームディレクトリの ~/.cursor/commands ディレクトリに保存されます。

  3. チームコマンド : Cursor ダッシュボード でチーム管理者により作成され、すべてのチームメンバーで自動的に利用可能になります。

チャット入力ボックスで / をタイプすると、Cursor はすべての場所から利用可能なコマンドを自動的に検出して表示し、ワークフローにわたりすぐにアクセスできるようにします。

 

コマンドの作成

  1. プロジェクトルートに .cursor/commands ディレクトリを作成します

  2. 説明的な名前の .md ファイルを追加します (e.g., review-code.md, write-tests.md)

  3. コマンドが実行内容を説明した plain な Markdown コンテンツを記述します

  4. / をタイプすると、コマンドはチャットに自動的に表示されます

コマンドのディレクトリ構造の例は以下のようなものです :

.cursor/
└── commands/
    ├── address-github-pr-comments.md
    ├── code-review-checklist.md
    ├── create-pr.md
    ├── light-review-existing-diffs.md
    ├── onboard-new-developer.md
    ├── run-all-tests-and-fix.md
    ├── security-audit.md
    └── setup-new-feature.md

 

チームコマンド

ℹ️ Team commands are available on Team and Enterprise plans.

 

以上





クラスキャット

最近の投稿

  • Cursor 再入門: エージェント – チャット: コマンド
  • Cursor 再入門: エージェント – チャット: 要約
  • Cursor 再入門: エージェント – チャット: エクスポート, 複製, 履歴
  • Cursor 再入門: エージェント – チャット: Tab, チェックポイント
  • Cursor 再入門: エージェント – 概要

タグ

AG2 (14) Agno (46) Agno 2.x (22) AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) Cursor (13) DGL 0.5 (14) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangChain v1.0 (10) LangGraph (24) LangGraph 0.5 (9) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2025年11月
月 火 水 木 金 土 日
 12
3456789
10111213141516
17181920212223
24252627282930
« 10月    
© 2025 ClassCat® AI Research | Powered by Minimalist Blog WordPress Theme