Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

AutoML : NNI 1.5 : 自動調整 : チューナー : ネットワーク Morphism

Posted on 05/28/2020 by Sales Information

AutoML : NNI 1.5 : 自動調整 : チューナー : ネットワーク Morphism (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 05/28/2020 (1.6.0)

* 本ページは、NNI の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Network Morphism Tuner on NNI

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

自動調整 : チューナー : ネットワーク Morphism

1. イントロダクション

Autokeras はネットワーク Morphism を利用するポピュラーな autoML ツールです。Autokeras の基本的なアイデアはニューラルネットワーク・アーキテクチャのメトリックを推定するために Bayesian 回帰を利用することです。毎回、それは father ネットワークから幾つかの child ネットワークを生成します。それからそれはネットワークの訓練結果の履歴からメトリック値とメトリック値ペアを推定するために naive Bayesian 回帰を利用します。次に、それは最善の、推定されたパフォーマンスを持つ child を選択してそれを訓練キューに追加します。Autokeras のワークにインスパイアされてその コード を参照し、私達は NNI プラットフォームでネットワーク Morphism 法を実装しました。

ネットワーク morphism トライアル使用方法についてより多く知ることを望むのであれば、Readme.md を見てください。

 

2. 使用方法

ネットワーク Morphism を使用するには、config.yml ファイルで以下の spec を変更するべきです :

tuner:
  #choice: NetworkMorphism
  builtinTunerName: NetworkMorphism
  classArgs:
    #choice: maximize, minimize
    optimize_mode: maximize
    #for now, this tuner only supports cv domain
    task: cv
    #modify to fit your input image width
    input_width: 32
    #modify to fit your input image channel
    input_channel: 3
    #modify to fit your number of classes
    n_output_node: 10

訓練手続きでは、それはネットワークグラフを表す JSON ファイルを生成します。ユーザはこの JSON ファイルから PyTorch or Keras モデルを構築するために “json_to_graph()” 関数を呼び出すことができます。

import nni
from nni.networkmorphism_tuner.graph import json_to_graph

def build_graph_from_json(ir_model_json):
    """build a pytorch model from json representation
    """
    graph = json_to_graph(ir_model_json)
    model = graph.produce_torch_model()
    return model

# trial get next parameter from network morphism tuner
RCV_CONFIG = nni.get_next_parameter()
# call the function to build pytorch model or keras model
net = build_graph_from_json(RCV_CONFIG)

# training procedure
# ....

# report the final accuracy to NNI
nni.report_final_result(best_acc)

最善のモデルをセーブしてロードすることを望む場合、以下のメソッドが勧められます。

# 1. Use NNI API
## You can get the best model ID from WebUI
## or `nni/experiments/experiment_id/log/model_path/best_model.txt'

## read the json string from model file and load it with NNI API
with open("best-model.json") as json_file:
    json_of_model = json_file.read()
model = build_graph_from_json(json_of_model)

# 2. Use Framework API (Related to Framework)
## 2.1 Keras API

## Save the model with Keras API in the trial code
## it's better to save model with id in nni local mode
model_id = nni.get_sequence_id()
## serialize model to JSON
model_json = model.to_json()
with open("model-{}.json".format(model_id), "w") as json_file:
    json_file.write(model_json)
## serialize weights to HDF5
model.save_weights("model-{}.h5".format(model_id))

## Load the model with Keras API if you want to reuse the model
## load json and create model
model_id = "" # id of the model you want to reuse
with open('model-{}.json'.format(model_id), 'r') as json_file:
    loaded_model_json = json_file.read()
loaded_model = model_from_json(loaded_model_json)
## load weights into new model
loaded_model.load_weights("model-{}.h5".format(model_id))

## 2.2 PyTorch API

## Save the model with PyTorch API in the trial code
model_id = nni.get_sequence_id()
torch.save(model, "model-{}.pt".format(model_id))

## Load the model with PyTorch API if you want to reuse the model
model_id = "" # id of the model you want to reuse
loaded_model = torch.load("model-{}.pt".format(model_id))

 

3. ファイル構造

チューナーは多くの様々なファイル、関数とクラスを持ちます。ここで、それらのファイルの多くに簡潔な紹介だけ与えます :

  • networkmorphism_tuner.py はネットワーク morphism テクニックを使用するチューナーです。
  • bayesian.py は既に探求したモデルに基づいて未知のモデルのメトリックを推定するための Bayesian 法です。
  • graph.py はメタグラフ・データ構造です。クラス Graph はモデルのニューラル・アーキテクチャ・グラフを表します。
    • グラフはモデルからニューラル・アーキテクチャ・グラフを抽出します。
    • グラフの各ノードは層間の中間 tensor です。
    • 各層はグラフのエッジです。
    • 特に、マルチエッジは同じ層を参照するかもしれません。
  • graph_transformer.py は幾つかのグラフ変換を含みます、これはグラフを拡大し、深くし、あるいはスキップ接続を追加します。
  • layers.py はモデルで使用する総ての層を含みます。
  • layer_transformer.py は幾つかの層変換を含みます、これは層を拡大し、深くし、あるいはスキップ接続を追加します。
  • nn.py は初期ネットワークを生成するクラスを含みます。
  • metric.py Accuracy と MSE を含む幾つかのメトリッククラス。
  • utils.py は Keras を使用する、cifar10 データセットのためのサンプル探索ネットワーク・アーキテクチャです。

 

4. ネットワーク表現 Json サンプル

ここに私達が定義した中間表現 JSON ファイルのサンプルがあります、これはアーキテクチャ探索手続きでチューナーからトライアルに渡されます。ユーザはこの JSON ファイルから PyTorch か Keras モデルを構築するためにトライアルコードで “json_to_graph()” 関数を呼び出すことができます。

{
     "input_shape": [32, 32, 3],
     "weighted": false,
     "operation_history": [],
     "layer_id_to_input_node_ids": {"0": [0],"1": [1],"2": [2],"3": [3],"4": [4],"5": [5],"6": [6],"7": [7],"8": [8],"9": [9],"10": [10],"11": [11],"12": [12],"13": [13],"14": [14],"15": [15],"16": [16]
     },
     "layer_id_to_output_node_ids": {"0": [1],"1": [2],"2": [3],"3": [4],"4": [5],"5": [6],"6": [7],"7": [8],"8": [9],"9": [10],"10": [11],"11": [12],"12": [13],"13": [14],"14": [15],"15": [16],"16": [17]
     },
     "adj_list": {
         "0": [[1, 0]],
         "1": [[2, 1]],
         "2": [[3, 2]],
         "3": [[4, 3]],
         "4": [[5, 4]],
         "5": [[6, 5]],
         "6": [[7, 6]],
         "7": [[8, 7]],
         "8": [[9, 8]],
         "9": [[10, 9]],
         "10": [[11, 10]],
         "11": [[12, 11]],
         "12": [[13, 12]],
         "13": [[14, 13]],
         "14": [[15, 14]],
         "15": [[16, 15]],
         "16": [[17, 16]],
         "17": []
     },
     "reverse_adj_list": {
         "0": [],
         "1": [[0, 0]],
         "2": [[1, 1]],
         "3": [[2, 2]],
         "4": [[3, 3]],
         "5": [[4, 4]],
         "6": [[5, 5]],
         "7": [[6, 6]],
         "8": [[7, 7]],
         "9": [[8, 8]],
         "10": [[9, 9]],
         "11": [[10, 10]],
         "12": [[11, 11]],
         "13": [[12, 12]],
         "14": [[13, 13]],
         "15": [[14, 14]],
         "16": [[15, 15]],
         "17": [[16, 16]]
     },
     "node_list": [
         [0, [32, 32, 3]],
         [1, [32, 32, 3]],
         [2, [32, 32, 64]],
         [3, [32, 32, 64]],
         [4, [16, 16, 64]],
         [5, [16, 16, 64]],
         [6, [16, 16, 64]],
         [7, [16, 16, 64]],
         [8, [8, 8, 64]],
         [9, [8, 8, 64]],
         [10, [8, 8, 64]],
         [11, [8, 8, 64]],
         [12, [4, 4, 64]],
         [13, [64]],
         [14, [64]],
         [15, [64]],
         [16, [64]],
         [17, [10]]
     ],
     "layer_list": [
         [0, ["StubReLU", 0, 1]],
         [1, ["StubConv2d", 1, 2, 3, 64, 3]],
         [2, ["StubBatchNormalization2d", 2, 3, 64]],
         [3, ["StubPooling2d", 3, 4, 2, 2, 0]],
         [4, ["StubReLU", 4, 5]],
         [5, ["StubConv2d", 5, 6, 64, 64, 3]],
         [6, ["StubBatchNormalization2d", 6, 7, 64]],
         [7, ["StubPooling2d", 7, 8, 2, 2, 0]],
         [8, ["StubReLU", 8, 9]],
         [9, ["StubConv2d", 9, 10, 64, 64, 3]],
         [10, ["StubBatchNormalization2d", 10, 11, 64]],
         [11, ["StubPooling2d", 11, 12, 2, 2, 0]],
         [12, ["StubGlobalPooling2d", 12, 13]],
         [13, ["StubDropout2d", 13, 14, 0.25]],
         [14, ["StubDense", 14, 15, 64, 64]],
         [15, ["StubReLU", 15, 16]],
         [16, ["StubDense", 16, 17, 64, 10]]
     ]
 }

モデルを 有向非巡回グラフ として考えることができます。各モデルの定義は JSON オブジェクトです、そこでは :

(訳注: 定義の詳細は 原文 参照)

 

5. TODO

次のステップで、API を固定ネットワーク generator からより多くの利用可能な演算子を持つネットワーク generator に変更します。将来的に中間表現 spec として JSON の代わりに ONNX を後で使用します。

 

以上






クラスキャット

最近の投稿

  • LangGraph on Colab : SQL エージェントの構築
  • LangGraph on Colab : マルチエージェント・スーパーバイザー
  • LangGraph on Colab : エージェント型 RAG
  • LangGraph : 例題 : エージェント型 RAG
  • LangGraph Platform : Get started : クイックスタート

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2020年5月
月 火 水 木 金 土 日
 123
45678910
11121314151617
18192021222324
25262728293031
« 4月   6月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme