Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

Agno : コンセプト : ツール – Human in the loop

Posted on 07/31/2025 by Masashi Okumura

Human in the loop (HITL) により、ツール呼び出しを実行する前後にユーザからの入力を取得できます。

Agno : ユーザガイド : コンセプト : ツール – Human in the loop

作成 : クラスキャット・セールスインフォメーション
作成日時 : 07/31/2025
バージョン : Agno 1.7.5

* 本記事は docs.agno.com の以下のページを独自に翻訳した上で、補足説明を加えてまとめ直しています :

  • User Guide : Concepts : Tools – Human in the loop

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス ⭐️ リニューアルしました 😉

◆ クラスキャット は人工知能に関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能導入個別相談会(無償)実施中! [詳細]

  • 人工知能研究開発支援 [詳細]
    1. 自社特有情報を含むチャットボット構築支援
    2. 画像認識 (医療系含む) / 画像生成

  • PoC(概念実証)を失敗させないための支援 [詳細]

◆ お問合せ : 下記までお願いします。

  • クラスキャット セールス・インフォメーション
  • sales-info@classcat.com
  • ClassCatJP

 

 

Agno ユーザガイド : コンセプト : ツール – Human in the loop

Human in the loop (HITL) により、ツール呼び出しを実行する前後にユーザからの入力を取得できます。

以下の例は、ツールフックを使用して、ツール呼び出しを実行する前にユーザの確認を得る方法を示しています。

 

例 : ツールフックを使用した Human in the loop

この例は以下を行なう方法を示します :

  • ユーザの確認のためにツールにフックを追加する。
  • ツール実行中にユーザ入力を処理する。
  • ユーザの選択に基づいて操作を適切にキャンセルする。

hitl.py

"""🤝 Human-in-the-Loop: Adding User Confirmation to Tool Calls

This example shows how to implement human-in-the-loop functionality in your Agno tools.
It shows how to:
- Add tool hooks to tools for user confirmation
- Handle user input during tool execution
- Gracefully cancel operations based on user choice

Some practical applications:
- Confirming sensitive operations before execution
- Reviewing API calls before they're made
- Validating data transformations
- Approving automated actions in critical systems

Run `pip install openai httpx rich agno` to install dependencies.
"""

import json
from typing import Any, Callable, Dict, Iterator

import httpx
from agno.agent import Agent
from agno.exceptions import StopAgentRun
from agno.models.openai import OpenAIChat
from agno.tools import FunctionCall, tool
from rich.console import Console
from rich.pretty import pprint
from rich.prompt import Prompt

# This is the console instance used by the print_response method
# We can use this to stop and restart the live display and ask for user confirmation
console = Console()


def confirmation_hook(
    function_name: str, function_call: Callable, arguments: Dict[str, Any]
):
    # Get the live display instance from the console
    live = console._live

    # Stop the live display temporarily so we can ask for user confirmation
    live.stop()  # type: ignore

    # Ask for confirmation
    console.print(f"\nAbout to run [bold blue]{function_name}[/]")
    message = (
        Prompt.ask("Do you want to continue?", choices=["y", "n"], default="y")
        .strip()
        .lower()
    )

    # Restart the live display
    live.start()  # type: ignore

    # If the user does not want to continue, raise a StopExecution exception
    if message != "y":
        raise StopAgentRun(
            "Tool call cancelled by user",
            agent_message="Stopping execution as permission was not granted.",
        )
    
    # Call the function
    result = function_call(**arguments)

    # Optionally transform the result

    return result


@tool(tool_hooks=[confirmation_hook])
def get_top_hackernews_stories(num_stories: int) -> Iterator[str]:
    """Fetch top stories from Hacker News.

    Args:
        num_stories (int): Number of stories to retrieve

    Returns:
        str: JSON string containing story details
    """
    # Fetch top story IDs
    response = httpx.get("https://hacker-news.firebaseio.com/v0/topstories.json")
    story_ids = response.json()

    # Yield story details
    final_stories = []
    for story_id in story_ids[:num_stories]:
        story_response = httpx.get(
            f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json"
        )
        story = story_response.json()
        if "text" in story:
            story.pop("text", None)
        final_stories.append(story)

    return json.dumps(final_stories)


# Initialize the agent with a tech-savvy personality and clear instructions
agent = Agent(
    model=OpenAIChat(id="gpt-4o-mini"),
    tools=[get_top_hackernews_stories],
    markdown=True,
)

agent.print_response(
    "Fetch the top 2 hackernews stories?", stream=True, console=console
)

 

以上



クラスキャット

最近の投稿

  • Agno : コンセプト :- ツールキット : 検索 (Arxiv, DuckDuckGo, Exa, Google Search 等)
  • Agno : コンセプト : ツール – Human in the loop
  • Agno : コンセプト : ツール – 例外, フック
  • Agno : コンセプト : ツール – 概要 / 独自ツールの作成
  • Agno : コンセプト : モデル – 概要, OpenAI, Anthropic Claude

タグ

Agno (28) AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (24) LangGraph 0.5 (9) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2025年7月
月 火 水 木 金 土 日
 123456
78910111213
14151617181920
21222324252627
28293031  
« 6月   8月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme