ホーム » TensorFlow スニペット » TensorFlow: snippet: テンソル

TensorFlow: snippet: テンソル

変数はグラフの実行を通じて状態を保持します。次の例題は単純なカウンターとして作用する変数の例です。

import tensorflow as tf

state = tf.Variable(0, name="counter")

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

init_op = tf.initialize_all_variables()

with tf.Session() as sess:
  sess.run(init_op)
  print(sess.run(state))
  for _ in range(3):
    sess.run(update)
    print(sess.run(state))

# 出力:
#
# 0
# 1
# 2
# 3
import tensorflow as tf

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)

intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
    result = sess.run([mul, intermed])
    print(result)

# 出力:
#
# [21.0, 7.0]

TensorFlow はまた、グラフにおける任意の操作にテンソルを直接あてがうために feed(供給)機構を提供しています。

feed(供給)は操作 (OP) の出力を一時的にテンソル値で置き換えます。feed data(供給データ)は run() 呼び出しの引数として供給します。feed は run 呼び出しに対してのみ渡されて使用されます。最も一般的なユースケースでは特定の操作を “feed” 操作に指定することを伴います。tf.placeholder() を使用してそれらを作成します :

import tensorflow as tf

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.mul(input1, input2)

with tf.Session() as sess:
    print (sess.run(output, feed_dict={input1:[7.], input2:[2.]}))
    print (sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

# 出力:
#
# [ 14.]
# [array([ 14.], dtype=float32)]
 

【参考】
(翻訳/解説)TensorFlow : GET STARTED : 基本的な使い方

AI導入支援 #2 ウェビナー

スモールスタートを可能としたAI導入支援   Vol.2
[無料 WEB セミナー] [詳細]
「画像認識 AI PoC スターターパック」の紹介
既に AI 技術を実ビジネスで活用し、成果を上げている日本企業も多く存在しており、競争優位なビジネスを展開しております。
しかしながら AI を導入したくとも PoC (概念実証) だけでも高額な費用がかかり取組めていない企業も少なくないようです。A I導入時には欠かせない PoC を手軽にしかも短期間で認知度を確認可能とするサービの紹介と共に、AI 技術の特性と具体的な導入プロセスに加え運用時のポイントについても解説いたします。
日時:2021年10月13日(水)
会場:WEBセミナー
共催:クラスキャット、日本FLOW(株)
後援:働き方改革推進コンソーシアム
参加費: 無料 (事前登録制)
人工知能開発支援
◆ クラスキャットは 人工知能研究開発支援 サービスを提供しています :
  • テクニカルコンサルティングサービス
  • 実証実験 (プロトタイプ構築)
  • アプリケーションへの実装
  • 人工知能研修サービス
◆ お問合せ先 ◆
(株)クラスキャット
セールス・インフォメーション
E-Mail:sales-info@classcat.com