import tensorflow as tf
mnist = input_data.read_data_sets("/var/tmp/mnist-softmax/", one_hot=True)
sess = tf.InteractiveSession()
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
tf.initialize_all_variables().run()
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
【参考】
TensorFlow : Tutorials : ML 初心者向けの MNIST