ホーム » CNN » TensorFlow 2.0 : 上級 Tutorials : 画像 :- 畳み込みニューラルネットワーク (CNN)

TensorFlow 2.0 : 上級 Tutorials : 画像 :- 畳み込みニューラルネットワーク (CNN)

TensorFlow 2.0 : 上級 Tutorials : 画像 :- 畳み込みニューラルネットワーク (CNN) (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 11/02/2019

* 本ページは、TensorFlow org サイトの TF 2.0 – Advanced Tutorials – Images の以下のページを翻訳した上で
適宜、補足説明したものです:

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

無料セミナー開催中 クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

画像 :- 畳み込みニューラルネットワーク

このチュートリアルは CIFAR 画像 を分類するために単純な 畳み込みニューラルネットワーク (CNN) の訓練を実演します。このチュートリアルは Keras Sequential API を使用しますので、モデルの作成と訓練は単にコードの数行かかるだけです。

 

Import TensorFlow

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

 

CIFAR10 データセットをダウンロードして準備する

CIFAR10 データセットは 10 クラスの 60,000 カラー画像を含みます、各クラスに 6,000 画像です。データセットは 50,000 訓練画像と 10,000 テスト画像に分割されます。クラスは手動で排他的でありそれらの間に重複はありません。

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 11s 0us/step

 

データを確認する

データセットが正しく見えるかを確認するため、訓練セットからの最初の 25 画像をプロットして各画像の下にクラス名を表示しましょう。

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # The CIFAR labels happen to be arrays, 
    # which is why you need the extra index
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

 

畳み込みベースを作成する

下の 6 行のコードは一般的なパターン: Conv2DMaxPooling2D 層のスタックを使用して畳み込みベースを定義しています。

入力として、CNN は shape (image_height, image_width, color_channels) の tensor を取り、バッチサイズは無視します。カラーチャネルに馴染みがないのであれば、color_channels は (R,G,B) に言及しています。この例では、CIFAR 画像のフォーマットである、shape (32, 32, 3) の入力を処理する CNN を構成します。引数 input_shape を最初の層に渡すことによりこれを行なうことができます。

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

ここまでのモデルのアーキテクチャを表示しましょう。

model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 30, 30, 32)        896       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 13, 13, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 4, 4, 64)          36928     
=================================================================
Total params: 56,320
Trainable params: 56,320
Non-trainable params: 0
_________________________________________________________________

上で、総ての Conv2D と MaxPooling2D 層の出力が shape (height, width, channels) の 3D tensor であることを見ることができます。幅と高さの次元はネットワークで深くなるにつれて縮小する傾向にあります。各 Conv2D 層の出力チャネル数は最初の引数 (e.g., 32 or 64) により制御されます。典型的には、幅と高さが縮小するにつれて、各 Conv2D 層でより多くの出力チャネルを追加する能力が (計算的に) あります。

 

上に Dense 層を追加する

モデルを完成するために、分類を遂行するために (shape (3, 3, 64) の) 畳み込みベースからの最後の出力 tensor を一つかそれ以上の Dense 層に供給します。Dense 層は入力としてベクトル (それは 1D です) を取りますが、その一方で現在の出力は 3D tensor です。最初に、3D 出力を 1D に平坦化 (or 展開) して、それから一つかそれ以上の Dense 層を上に追加します。CIFAR は 10 出力クラスを持ちますので、10 出力と softmax 活性を持つ最後の Dense 層を使用します。

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

ここにモデルの完全なアーキテクチャがあります。

model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 30, 30, 32)        896       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 13, 13, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 4, 4, 64)          36928     
_________________________________________________________________
flatten (Flatten)            (None, 1024)              0         
_________________________________________________________________
dense (Dense)                (None, 64)                65600     
_________________________________________________________________
dense_1 (Dense)              (None, 10)                650       
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________

見れるように、2 つの Dense 層を通り抜ける前に (3, 3, 64) 出力は shape (576) のベクトルに平坦化されます。

 

モデルをコンパイルして訓練する

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
Train on 50000 samples, validate on 10000 samples
Epoch 1/10
50000/50000 [==============================] - 11s 222us/sample - loss: 1.5684 - accuracy: 0.4266 - val_loss: 1.2367 - val_accuracy: 0.5543
Epoch 2/10
50000/50000 [==============================] - 7s 130us/sample - loss: 1.1648 - accuracy: 0.5879 - val_loss: 1.1616 - val_accuracy: 0.5853
Epoch 3/10
50000/50000 [==============================] - 6s 130us/sample - loss: 1.0314 - accuracy: 0.6379 - val_loss: 1.0190 - val_accuracy: 0.6374
Epoch 4/10
50000/50000 [==============================] - 6s 129us/sample - loss: 0.9382 - accuracy: 0.6711 - val_loss: 0.9656 - val_accuracy: 0.6617
Epoch 5/10
50000/50000 [==============================] - 6s 129us/sample - loss: 0.8650 - accuracy: 0.6970 - val_loss: 0.9005 - val_accuracy: 0.6870
Epoch 6/10
50000/50000 [==============================] - 6s 129us/sample - loss: 0.8054 - accuracy: 0.7183 - val_loss: 0.9217 - val_accuracy: 0.6748
Epoch 7/10
50000/50000 [==============================] - 7s 131us/sample - loss: 0.7557 - accuracy: 0.7356 - val_loss: 0.9336 - val_accuracy: 0.6858
Epoch 8/10
50000/50000 [==============================] - 7s 132us/sample - loss: 0.7145 - accuracy: 0.7514 - val_loss: 0.9107 - val_accuracy: 0.6906
Epoch 9/10
50000/50000 [==============================] - 7s 134us/sample - loss: 0.6758 - accuracy: 0.7647 - val_loss: 0.8696 - val_accuracy: 0.7077
Epoch 10/10
50000/50000 [==============================] - 6s 130us/sample - loss: 0.6410 - accuracy: 0.7757 - val_loss: 0.8684 - val_accuracy: 0.7076

 

モデルを評価する

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
10000/1 - 1s - loss: 0.8927 - accuracy: 0.7076

print(test_acc)
0.7076

単純な CNN は 70% を越えるテスト精度を達成しました。数行のコードとしては悪くないです!もう一つの CNN スタイルについては、Keras subclassing API と tf.GradientTape を使用するサンプルを ここ で見てください。

 

以上






AI導入支援 #2 ウェビナー

スモールスタートを可能としたAI導入支援   Vol.2
[無料 WEB セミナー] [詳細]
「画像認識 AI PoC スターターパック」の紹介
既に AI 技術を実ビジネスで活用し、成果を上げている日本企業も多く存在しており、競争優位なビジネスを展開しております。
しかしながら AI を導入したくとも PoC (概念実証) だけでも高額な費用がかかり取組めていない企業も少なくないようです。A I導入時には欠かせない PoC を手軽にしかも短期間で認知度を確認可能とするサービの紹介と共に、AI 技術の特性と具体的な導入プロセスに加え運用時のポイントについても解説いたします。
日時:2021年10月13日(水)
会場:WEBセミナー
共催:クラスキャット、日本FLOW(株)
後援:働き方改革推進コンソーシアム
参加費: 無料 (事前登録制)
人工知能開発支援
◆ クラスキャットは 人工知能研究開発支援 サービスを提供しています :
  • テクニカルコンサルティングサービス
  • 実証実験 (プロトタイプ構築)
  • アプリケーションへの実装
  • 人工知能研修サービス
◆ お問合せ先 ◆
(株)クラスキャット
セールス・インフォメーション
E-Mail:sales-info@classcat.com