TensorFlow Probability 0.10 : ガイド : 学習可能な分布 Zoo (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/18/2020 (0.10.0)
* 本ページは、TensorFlow Probability の以下のドキュメントを翻訳した上で適宜、補足説明したものです:
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
ガイド : 学習可能な分布 Zoo
この colab では学習可能な (「訓練可能な」) 分布を構築する様々な例を示します (分布を説明する努力はしません、それらをどのように構築するかを示すだけです)。
import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import prefer_static tfb = tfp.bijectors tfd = tfp.distributions tf.enable_v2_behavior()
event_size = 4 num_components = 3
chol(Cov) のための Scaled Identity を持つ学習可能な多変量正規分布
learnable_mvn_scaled_identity = tfd.Independent( tfd.Normal( loc=tf.Variable(tf.zeros(event_size), name='loc'), scale=tfp.util.TransformedVariable( tf.ones([event_size, 1]), bijector=tfb.Exp()), name='scale'), reinterpreted_batch_ndims=1, name='learnable_mvn_scaled_identity') print(learnable_mvn_scaled_identity) print(learnable_mvn_scaled_identity.trainable_variables)
tfp.distributions.Independent("learnable_mvn_scaled_identity", batch_shape=[4], event_shape=[4], dtype=float32) (<tf.Variable 'Variable:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>, <tf.Variable 'Variable:0' shape=(4, 1) dtype=float32, numpy= array([[0.], [0.], [0.], [0.]], dtype=float32)>)
chol(Cov) のための Diagonal を持つ学習可能な多変量正規分布
learnable_mvndiag = tfd.Independent( tfd.Normal( loc=tf.Variable(tf.zeros(event_size), name='loc'), scale=tfp.util.TransformedVariable( tf.ones(event_size), bijector=tfb.Softplus()), # Use Softplus...cuz why not? name='scale'), reinterpreted_batch_ndims=1, name='learnable_mvn_diag') print(learnable_mvndiag) print(learnable_mvndiag.trainable_variables)
tfp.distributions.Independent("learnable_mvn_diag", batch_shape=[], event_shape=[4], dtype=float32) (<tf.Variable 'Variable:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>, <tf.Variable 'Variable:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>)
多変量正規分布の混合 (球面 (= spherical))
learnable_mix_mvn_scaled_identity = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical( logits=tf.Variable( # Changing the `1.` intializes with a geometric decay. -tf.math.log(1.) * tf.range(num_components, dtype=tf.float32), name='logits')), components_distribution=tfd.Independent( tfd.Normal( loc=tf.Variable( tf.random.normal([num_components, event_size]), name='loc'), scale=tfp.util.TransformedVariable( 10. * tf.ones([num_components, 1]), bijector=tfb.Softplus()), # Use Softplus...cuz why not? name='scale'), reinterpreted_batch_ndims=1), name='learnable_mix_mvn_scaled_identity') print(learnable_mix_mvn_scaled_identity) print(learnable_mix_mvn_scaled_identity.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvn_scaled_identity", batch_shape=[], event_shape=[4], dtype=float32) (<tf.Variable 'Variable:0' shape=(3, 4) dtype=float32, numpy= array([[-0.11800266, -1.3127382 , -0.1813932 , 0.24975719], [ 0.97209346, -0.91694 , 0.84734786, -1.3201759 ], [ 0.15194772, 0.33787215, -0.4269769 , -0.26286215]], dtype=float32)>, <tf.Variable 'Variable:0' shape=(3, 1) dtype=float32, numpy= array([[-4.600166], [-4.600166], [-4.600166]], dtype=float32)>, <tf.Variable 'logits:0' shape=(3,) dtype=float32, numpy=array([-0., -0., -0.], dtype=float32)>)
多変量正規分布の混合 (球面) with first mix weight unlearnable
learnable_mix_mvndiag_first_fixed = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical( logits=tfp.util.TransformedVariable( # Initialize logits as geometric decay. -tf.math.log(1.5) * tf.range(num_components, dtype=tf.float32), tfb.Pad(paddings=[[1, 0]], constant_values=0)), name='logits'), components_distribution=tfd.Independent( tfd.Normal( loc=tf.Variable( # Use Rademacher...cuz why not? tfp.math.random_rademacher([num_components, event_size]), name='loc'), scale=tfp.util.TransformedVariable( 10. * tf.ones([num_components, 1]), bijector=tfb.Softplus()), # Use Softplus...cuz why not? name='scale'), reinterpreted_batch_ndims=1), name='learnable_mix_mvndiag_first_fixed') print(learnable_mix_mvndiag_first_fixed) print(learnable_mix_mvndiag_first_fixed.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvndiag_first_fixed", batch_shape=[], event_shape=[4], dtype=float32) (<tf.Variable 'Variable:0' shape=(3, 4) dtype=float32, numpy= array([[-1., -1., 1., -1.], [-1., -1., -1., -1.], [ 1., 1., 1., -1.]], dtype=float32)>, <tf.Variable 'Variable:0' shape=(3, 4) dtype=float32, numpy= array([[-4.600166, -4.600166, -4.600166, -4.600166], [-4.600166, -4.600166, -4.600166, -4.600166], [-4.600166, -4.600166, -4.600166, -4.600166]], dtype=float32)>, <tf.Variable 'Variable:0' shape=(2,) dtype=float32, numpy=array([-0.4054651, -0.8109302], dtype=float32)>)
多変量正規分布の混合 (full Cov)
earnable_mix_mvntril = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical( logits=tf.Variable( # Changing the `1.` intializes with a geometric decay. -tf.math.log(1.) * tf.range(num_components, dtype=tf.float32), name='logits')), components_distribution=tfd.MultivariateNormalTriL( loc=tf.Variable(tf.zeros([num_components, event_size]), name='loc'), scale_tril=tfp.util.TransformedVariable( 10. * tf.eye(event_size, batch_shape=[num_components]), bijector=tfb.FillScaleTriL()), name='scale_tril'), name='learnable_mix_mvntril') print(learnable_mix_mvntril) print(learnable_mix_mvntril.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvntril", batch_shape=[], event_shape=[4], dtype=float32) (<tf.Variable 'Variable:0' shape=(3, 4) dtype=float32, numpy= array([[ 1.4036556 , -0.22486973, 0.8365339 , 1.1744921 ], [-0.14385273, 1.5095806 , 0.78327304, -0.64133334], [-0.22640549, 1.908316 , 1.1216396 , -1.2109828 ]], dtype=float32)>, <tf.Variable 'Variable:0' shape=(3, 10) dtype=float32, numpy= array([[-4.6011715, 0. , 0. , 0. , -4.6011715, -4.6011715, 0. , 0. , 0. , -4.6011715], [-4.6011715, 0. , 0. , 0. , -4.6011715, -4.6011715, 0. , 0. , 0. , -4.6011715], [-4.6011715, 0. , 0. , 0. , -4.6011715, -4.6011715, 0. , 0. , 0. , -4.6011715]], dtype=float32)>, <tf.Variable 'logits:0' shape=(3,) dtype=float32, numpy=array([-0., -0., -0.], dtype=float32)>)
多変量正規分布の混合 (full Cov) with unlearnable first mix & first component
# Make a bijector which pads an eye to what otherwise fills a tril. num_tril_nonzero = lambda num_rows: num_rows * (num_rows + 1) // 2 num_tril_rows = lambda nnz: prefer_static.cast( prefer_static.sqrt(0.25 + 2. * prefer_static.cast(nnz, tf.float32)) - 0.5, tf.int32) # TFP doesn't have a concat bijector, so we roll out our own. class PadEye(tfb.Bijector): def __init__(self, tril_fn=None): if tril_fn is None: tril_fn = tfb.FillScaleTriL() self._tril_fn = getattr(tril_fn, 'inverse', tril_fn) super(PadEye, self).__init__( forward_min_event_ndims=2, inverse_min_event_ndims=2, is_constant_jacobian=True, name='PadEye') def _forward(self, x): num_rows = int(num_tril_rows(tf.compat.dimension_value(x.shape[-1]))) eye = tf.eye(num_rows, batch_shape=prefer_static.shape(x)[:-2]) return tf.concat([self._tril_fn(eye)[..., tf.newaxis, :], x], axis=prefer_static.rank(x) - 2) def _inverse(self, y): return y[..., 1:, :] def _forward_log_det_jacobian(self, x): return tf.zeros([], dtype=x.dtype) def _inverse_log_det_jacobian(self, y): return tf.zeros([], dtype=y.dtype) def _forward_event_shape(self, in_shape): n = prefer_static.size(in_shape) return in_shape + prefer_static.one_hot(n - 2, depth=n, dtype=tf.int32) def _inverse_event_shape(self, out_shape): n = prefer_static.size(out_shape) return out_shape - prefer_static.one_hot(n - 2, depth=n, dtype=tf.int32) tril_bijector = tfb.FillScaleTriL(diag_bijector=tfb.Softplus()) learnable_mix_mvntril_fixed_first = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical( logits=tfp.util.TransformedVariable( # Changing the `1.` intializes with a geometric decay. -tf.math.log(1.) * tf.range(num_components, dtype=tf.float32), bijector=tfb.Pad(paddings=[(1, 0)]), name='logits')), components_distribution=tfd.MultivariateNormalTriL( loc=tfp.util.TransformedVariable( tf.zeros([num_components, event_size]), bijector=tfb.Pad(paddings=[(1, 0)], axis=-2), name='loc'), scale_tril=tfp.util.TransformedVariable( 10. * tf.eye(event_size, batch_shape=[num_components]), bijector=tfb.Chain([tril_bijector, PadEye(tril_bijector)]), name='scale_tril')), name='learnable_mix_mvntril_fixed_first') print(learnable_mix_mvntril_fixed_first) print(learnable_mix_mvntril_fixed_first.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvntril_fixed_first", batch_shape=[], event_shape=[4], dtype=float32) (<tf.Variable 'loc:0' shape=(2, 4) dtype=float32, numpy= array([[ 0.53900903, -0.17989647, -1.196744 , -1.0601326 ], [ 0.46199334, 1.2968503 , 0.20908853, -0.36455044]], dtype=float32)>, <tf.Variable 'Variable:0' shape=(2, 10) dtype=float32, numpy= array([[-4.6011715, 0. , 0. , 0. , -4.6011715, -4.6011715, 0. , 0. , 0. , -4.6011715], [-4.6011715, 0. , 0. , 0. , -4.6011715, -4.6011715, 0. , 0. , 0. , -4.6011715]], dtype=float32)>, <tf.Variable 'logits:0' shape=(2,) dtype=float32, numpy=array([-0., -0.], dtype=float32)>)
以上