Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

MediaPipe 0.8 : Getting Started : MediaPipe in Python

Posted on 03/06/2021 by Sales Information

MediaPipe 0.8 : Getting Started : MediaPipe in Python (翻訳/解説)

翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 03/06/2021 (0.8.3)

* 本ページは、MediaPipe の以下のドキュメントを翻訳した上で適宜、補足説明したものです:

  • Getting Started : MediaPipe in Python

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

人工知能研究開発支援 人工知能研修サービス テレワーク & オンライン授業を支援
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。)

◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

 

MediaPipe 0.8 : Getting Started : MediaPipe in Python

Ready-to-use Python ソリューション

MediaPipe は ready-to-use でありながらカスタマイズ可能な Python ソリューションを事前ビルドされた Python パッケージとして提供します。MediaPipe Python パッケージは Linux, macOS と Windows のために PyPI で利用可能です。

例えば、Python 仮想環境を有効にできます :

$ python3 -m venv mp_env && source mp_env/bin/activate

MediaPipe Python パッケージをインストールして Python インタープリタを起動します :

(mp_env)$ pip install mediapipe
(mp_env)$ python3

Python インタープリタで、パッケージをインポートしてソリューションの一つを利用し始めます :

import mediapipe as mp
mp_face_mesh = mp.solutions.face_mesh

configuration オプションと使用サンプルについて更に学習するためには、下のリンクを通して各ソリューションの詳細を探してください :

  • MediaPipe 顔検出
  • MediaPipe 顔メッシュ
  • MediaPipe ハンド
  • MediaPipe Holistic
  • MediaPipe Objectron
  • MediaPipe ポーズ

 

MediaPipe on Google Colab

  • MediaPipe 顔検出 Colab
  • MediaPipe 顔メッシュ Colab
  • MediaPipe ハンド Colab
  • MediaPipe Holistic Colab
  • MediaPipe Objectron Colab
  • MediaPipe ポーズ Colab
  • MediaPipe ポーズ分類 Colab (基本)
  • MediaPipe ポーズ分類 Colab (Extended)

 

MediaPipe Python フレームワーク

ready-to-use ソリューションは MediaPipe Python フレームワーク上に構築されます、これは 上級ユーザにより自身の MediaPipe graphs を Python で実行するために利用できます。より多くの情報については ここ を見てください。

 

MediaPipe Python パッケージをビルドする

ローカル変更を持ちソースから Python パッケージをビルドする必要がある場合に限り下のステップに従ってください。そうでないなら、ready-to-use ソリューションを利用するために単純に pip install mediapipe を実行することをユーザに強く勧めます、より便利で遥かに高速です。

MediaPipe PyPI は現在 aarch64 Python wheel ファイルを提供しません。Nvidia Jetson と Raspberry Pi のような aarch64 Linux システム上の MediaPipe Python をビルドして使用するためには、ここ を読んでください。

  1. MediaPipe のために Bazel と OpenCV が正しくインストールされていることを確実にしてください。Linux と macOS 上 MediaPipe のために Bazel と OpenCV をどのようにセットアップするかについては Installation を見てください。
  2. 以下の依存性をインストールする。

    Debian or Ubuntu:

    $ sudo apt install python3-dev
    $ sudo apt install python3-venv
    $ sudo apt install -y protobuf-compiler
    
    # If you need to build opencv from source.
    $ sudo apt install cmake
    

    macOS:

    $ brew install protobuf
    
    # If you need to build opencv from source.
    $ brew install cmake
    
  3. Python 仮想環境を有効にする。
    $ python3 -m venv mp_env && source mp_env/bin/activate
    
  4. 仮想環境で、MediaPipe repo ディレクトリに行く。
  5. 必要な Python パッケージをインストールする。
    (mp_env)mediapipe$ pip3 install -r requirements.txt
    
  6. MediaPipe パッケージを生成してインストールする。
    (mp_env)mediapipe$ python3 setup.py gen_protos
    (mp_env)mediapipe$ python3 setup.py install --link-opencv
    

    or

    (mp_env)mediapipe$ python3 setup.py gen_protos
    (mp_env)mediapipe$ python3 setup.py bdist_wheel
    
 

以上







クラスキャット

最近の投稿

  • LangGraph : 例題 : エージェント型 RAG
  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (21) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2021年3月
月 火 水 木 金 土 日
1234567
891011121314
15161718192021
22232425262728
293031  
« 2月   4月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme