🦜️🔗LangChain : モジュール : 検索 – Retrievers : コンテキスト圧縮 (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 09/15/2023
* 本ページは、LangChain の以下のドキュメントを翻訳した上で適宜、補足説明したものです:
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
- 人工知能研究開発支援
- 人工知能研修サービス(経営者層向けオンサイト研修)
- テクニカルコンサルティングサービス
- 実証実験(プロトタイプ構築)
- アプリケーションへの実装
- 人工知能研修サービス
- PoC(概念実証)を失敗させないための支援
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
- 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
- sales-info@classcat.com ; Web: www.classcat.com ; ClassCatJP
🦜️🔗 LangChain : モジュール : 検索 – Retrievers : コンテキスト圧縮
検索取得の一つの課題は、通常、データをシステムに供給するときには、ドキュメントストレージシステムが直面する特定のクエリーがわからないことです。つまり、クエリーに最も関連する情報は多くの無関係のテキストを伴うドキュメントの中に埋もれる可能性があります。それらの完全なドキュメントをアプリケーションに渡すとより高価な LLM 呼び出しや劣化したレスポンスに繋がる可能性があります。
コンテキスト圧縮はこれを解決することを目的としています。そのアイデアは単純です : 検索されたドキュメントをそのまま直ちに返すのではなく、関連情報だけが返されるように、与えられたクエリーのコンテキストを使用してそれらを圧縮することができます。ここで言う「圧縮 (Compressing)」は個々のドキュメントのコンテンツの圧縮と、ドキュメント全体のフィルタリングの両方を指します。
コンテキスト圧縮 Retriever を使用するには、以下が必要です :
- ベース retriever
- ドキュメント Compressor
コンテキスト圧縮 Retriever はクエリーをベース retriever に渡し、初期ドキュメント(s) を受け取りそれらをドキュメント Compressor に渡します。ドキュメント Compressor はドキュメントのリストを受け取り、ドキュメントのコンテンツを削減するかドキュメントをまとめて破棄するかしてそのリストを短くします。
Get started
# Helper function for printing docs
def pretty_print_docs(docs):
print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]))
普通の (vanilla) ベクトルストア retriever の使用
単純なベクトルストア retriever を初期化して 2023 年の一般教書演説 (State of the Union speech) を (チャンクで) ストアすることから始めましょう。サンプルの質問が与えられたとき、retriever は 1 つか 2 つの関連ドキュメントと幾つかの無関係なドキュメントを返すことが分かります。そして関連ドキュメントさえもそれらの中に多くの無関係な情報を含みます。
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
from langchain.vectorstores import FAISS
documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever()
docs = retriever.get_relevant_documents("What did the president say about Ketanji Brown Jackson")
pretty_print_docs(docs)
Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. ---------------------------------------------------------------------------------------------------- Document 3: And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic. ---------------------------------------------------------------------------------------------------- Document 4: Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. And as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. That ends on my watch. Medicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. We’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. Let’s pass the Paycheck Fairness Act and paid leave. Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. Let’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.
LLMChainExtractor を使用してコンテキスト圧縮を追加する
次にベース retriever を ContextualCompressionRetriever でラップしましょう。LLMChainExtractor を追加します、これは初期に返されたドキュメントに対して反復して、クエリーに関連するコンテンツだけを各々から抽出します。
from langchain.llms import OpenAI
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
llm = OpenAI(temperature=0)
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown")
pretty_print_docs(compressed_docs)
Document 1: "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence." ---------------------------------------------------------------------------------------------------- Document 2: "A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans."
その他の組み込み compressor: フィルター
LLMChainFilter
LLMChainFilter はわずかに単純ですがより堅牢なコンプレッサーで、ドキュメントの内容を操作することなく、最初に取得されたどのドキュメント(s) のフィルタリングで除外してどれを返すかを決定するために LLM チェインを使用します。
from langchain.retrievers.document_compressors import LLMChainFilter
_filter = LLMChainFilter.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(base_compressor=_filter, base_retriever=retriever)
compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown")
pretty_print_docs(compressed_docs)
Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
EmbeddingsFilter
取得したドキュメント各々に対する追加の LLM 呼び出しは高価で遅いです。EmbeddingsFilter は、ドキュメントとクエリーを埋め込み、そしてクエリーに十分に類似した埋め込みを持つそれらのドキュメントだけを返すことでより安価で高速なオプションを提供します。
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.document_compressors import EmbeddingsFilter
embeddings = OpenAIEmbeddings()
embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=retriever)
compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown")
pretty_print_docs(compressed_docs)
Document 1: Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ---------------------------------------------------------------------------------------------------- Document 2: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders. ---------------------------------------------------------------------------------------------------- Document 3: And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. And soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. So tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. First, beat the opioid epidemic.
コンプレッサーとドキュメント変換器を一緒に並べる (string)
DocumentCompressorPipeline を使用して複数のコンプレッサーを簡単に順番に組み合わせることもできます。コンプレッサーと一緒にパイプラインに BaseDocumentTransformers を追加することができます、これはコンテキスト圧縮は実行しませんが、ドキュメントのセット上で単純に何某かの変換を実行します。例えば、TextSplitters はドキュメントを小さい断片に分割するドキュメント変換器として使用できて、EmbeddingsRedundantFilter はドキュメント間の埋め込み類似度に基づいて冗長なドキュメントをフィルタリングするために使用できます。
以下ではまずドキュメントを小さいチャンクに分割してから冗長なドキュメントを除去し、それからクエリーへの関連性に基づいてフィルタリングすることでコンプレッサー・パイプラインを作成します。
from langchain.document_transformers import EmbeddingsRedundantFilter
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain.text_splitter import CharacterTextSplitter
splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings)
relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
pipeline_compressor = DocumentCompressorPipeline(
transformers=[splitter, redundant_filter, relevant_filter]
)
compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor, base_retriever=retriever)
compressed_docs = compression_retriever.get_relevant_documents("What did the president say about Ketanji Jackson Brown")
pretty_print_docs(compressed_docs)
Document 1: One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson ---------------------------------------------------------------------------------------------------- Document 2: As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year ---------------------------------------------------------------------------------------------------- Document 3: A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder
以上