Skip to content

ClasCat® AI Research

クラスキャット – 生成 AI, AI エージェント, MCP

Menu
  • ホーム
    • ClassCat® AI Research ホーム
    • クラスキャット・ホーム
  • OpenAI API
    • OpenAI Python ライブラリ 1.x : 概要
    • OpenAI ブログ
      • GPT の紹介
      • GPT ストアの紹介
      • ChatGPT Team の紹介
    • OpenAI platform 1.x
      • Get Started : イントロダクション
      • Get Started : クイックスタート (Python)
      • Get Started : クイックスタート (Node.js)
      • Get Started : モデル
      • 機能 : 埋め込み
      • 機能 : 埋め込み (ユースケース)
      • ChatGPT : アクション – イントロダクション
      • ChatGPT : アクション – Getting started
      • ChatGPT : アクション – アクション認証
    • OpenAI ヘルプ : ChatGPT
      • ChatGPTとは何ですか?
      • ChatGPT は真実を語っていますか?
      • GPT の作成
      • GPT FAQ
      • GPT vs アシスタント
      • GPT ビルダー
    • OpenAI ヘルプ : ChatGPT > メモリ
      • FAQ
    • OpenAI ヘルプ : GPT ストア
      • 貴方の GPT をフィーチャーする
    • OpenAI Python ライブラリ 0.27 : 概要
    • OpenAI platform
      • Get Started : イントロダクション
      • Get Started : クイックスタート
      • Get Started : モデル
      • ガイド : GPT モデル
      • ガイド : 画像生成 (DALL·E)
      • ガイド : GPT-3.5 Turbo 対応 微調整
      • ガイド : 微調整 1.イントロダクション
      • ガイド : 微調整 2. データセットの準備 / ケーススタディ
      • ガイド : 埋め込み
      • ガイド : 音声テキスト変換
      • ガイド : モデレーション
      • ChatGPT プラグイン : イントロダクション
    • OpenAI Cookbook
      • 概要
      • API 使用方法 : レート制限の操作
      • API 使用方法 : tiktoken でトークンを数える方法
      • GPT : ChatGPT モデルへの入力をフォーマットする方法
      • GPT : 補完をストリームする方法
      • GPT : 大規模言語モデルを扱う方法
      • 埋め込み : 埋め込みの取得
      • GPT-3 の微調整 : 分類サンプルの微調整
      • DALL-E : DALL·E で 画像を生成して編集する方法
      • DALL·E と Segment Anything で動的マスクを作成する方法
      • Whisper プロンプティング・ガイド
  • Gemini API
    • Tutorials : クイックスタート with Python (1) テキスト-to-テキスト生成
    • (2) マルチモーダル入力 / 日本語チャット
    • (3) 埋め込みの使用
    • (4) 高度なユースケース
    • クイックスタート with Node.js
    • クイックスタート with Dart or Flutter (1) 日本語動作確認
    • Gemma
      • 概要 (README)
      • Tutorials : サンプリング
      • Tutorials : KerasNLP による Getting Started
  • Keras 3
    • 新しいマルチバックエンド Keras
    • Keras 3 について
    • Getting Started : エンジニアのための Keras 入門
    • Google Colab 上のインストールと Stable Diffusion デモ
    • コンピュータビジョン – ゼロからの画像分類
    • コンピュータビジョン – 単純な MNIST convnet
    • コンピュータビジョン – EfficientNet を使用した微調整による画像分類
    • コンピュータビジョン – Vision Transformer による画像分類
    • コンピュータビジョン – 最新の MLPモデルによる画像分類
    • コンピュータビジョン – コンパクトな畳込み Transformer
    • Keras Core
      • Keras Core 0.1
        • 新しいマルチバックエンド Keras (README)
        • Keras for TensorFlow, JAX, & PyTorch
        • 開発者ガイド : Getting started with Keras Core
        • 開発者ガイド : 関数型 API
        • 開発者ガイド : シーケンシャル・モデル
        • 開発者ガイド : サブクラス化で新しい層とモデルを作成する
        • 開発者ガイド : 独自のコールバックを書く
      • Keras Core 0.1.1 & 0.1.2 : リリースノート
      • 開発者ガイド
      • Code examples
      • Keras Stable Diffusion
        • 概要
        • 基本的な使い方 (テキスト-to-画像 / 画像-to-画像変換)
        • 混合精度のパフォーマンス
        • インペインティングの簡易アプリケーション
        • (参考) KerasCV – Stable Diffusion を使用した高性能画像生成
  • TensorFlow
    • TF 2 : 初級チュートリアル
    • TF 2 : 上級チュートリアル
    • TF 2 : ガイド
    • TF 1 : チュートリアル
    • TF 1 : ガイド
  • その他
    • 🦜️🔗 LangChain ドキュメント / ユースケース
    • Stable Diffusion WebUI
      • Google Colab で Stable Diffusion WebUI 入門
      • HuggingFace モデル / VAE の導入
      • LoRA の利用
    • Diffusion Models / 拡散モデル
  • クラスキャット
    • 会社案内
    • お問合せ
    • Facebook
    • ClassCat® Blog
Menu

LangGraph : 概要

Posted on 05/19/202505/19/2025 by Masashi Okumura

LangGraph は長期運用されるステートフルなエージェントを構築、管理そして配備するための強力な low レベルのオーケストレーション・フレームワークです。

LangGraph : 概要

作成 : クラスキャット・セールスインフォメーション
作成日時 : 05/19/2025

* 本記事は github: langchain-ai/langgraph の以下のページを独自に翻訳した上でまとめ直し、補足説明を加えています :

  • langchain-ai/langgraph/README.md

* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

クラスキャット 人工知能 研究開発支援サービス ⭐️ リニューアルしました 😉

◆ クラスキャット は人工知能に関する各種サービスを提供しています。お気軽にご相談ください :

  • 人工知能導入個別相談会(無償)実施中! [詳細]

  • 人工知能研究開発支援 [詳細]
    1. 自社特有情報を含むチャットボット構築支援
    2. 画像認識 (医療系含む) / 画像生成

  • PoC(概念実証)を失敗させないための支援 [詳細]

◆ お問合せ : 下記までお願いします。

  • クラスキャット セールス・インフォメーション
  • sales-info@classcat.com
  • ClassCatJP

 

 

LangGraph : 概要

Klarna, Replit, Elastic 等を含む、エージェントの未来を形作る企業から信頼されています – LangGraph は長期運用されるステートフルなエージェントを構築、管理そして配備するための強力な low レベルのオーケストレーション・フレームワークです。

 

Get started

LangGraph のインストール :

pip install -U langgraph

次に、事前構築されたコンポーネントを使用して エージェントを作成します :

# pip install -qU "langchain[anthropic]" to call the model

from langgraph.prebuilt import create_react_agent

def get_weather(city: str) -> str:
    """Get weather for a given city."""
    return f"It's always sunny in {city}!"

agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[get_weather],
    prompt="You are a helpful assistant"
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "what is the weather in sf"}]}
)

詳細は、クイックスタート をご覧ください。また、カスタマイズ可能なアーキテクチャ、長期メモリやその他の複雑なタスク処理を備えた エージェント・ワークフロー を構築する方法を学習するには、LangGraph 基本チュートリアル をご覧ください。

 

主要なメリット

LangGraph は、長期運用、ステートフル・ワークフローやエージェントのための下位レベルのインフラのサポートを提供します。LangGraph はプロンプトやアーキテクチャの抽象化は行わず、以下の主要なメリットを提供します :

  • 耐久性のある実行 (Durable execution) : 障害時にも持続して長期間実行できて、正確に中断時点から自動的に再開するエージェントを構築します。

  • 人間介在型 (Human-in-the-loop) : 実行中の任意の時点でエージェントの状態を検査して変更することで、人間の監視をシームレスに組み込みます。

  • 包括的なメモリ (Comprehensive memory) : 進行中の推論のための短期的な作業メモリと、セッションに渡る長期的な永続メモリの両方を備えた、真にステートフルなエージェントを作成します。

  • LangSmith によるデバッグ : 実行パスをトレースし、状態遷移を捕捉し、詳細なランタイムメトリクスを提供する視覚化ツールを使用して、複雑なエージェントの動作の深い洞察を得ます。

  • Production-ready 配備 : ステートフルで、長時間実行されるワークフローの特有な課題に対応するように設計されたスケーラブルなインフラを使用して、洗練されたエージェント・システムを自信を持って配備します。

 

LangGraph のエコシステム

LongGraph はスタンドアローンで使用できる一方で、任意の LangChain 製品とシームレスに統合されており、開発者にエージェントを構築するための完全なツールセットを提供します。LLM アプリケーションの開発の向上のために、以下を LangGraph と組み合わせてください :

  • LangSmith — エージェントの評価と監視 (observability) に役立ちます。パフォーマンスの低い LLM app の実行をデバッグし、エージェントの軌跡 (trajectories) を評価し、製品の可視化を得て、そして時間につれてパフォーマンスを改良します。

  • LangGraph プラットフォーム — 長時間実行、ステーフルなワークフローのための目的に応じた配備プラットフォームにより、エージェントの配備とスケールを容易に行えます。エージェントの検索、再利用、構成、そしてチーム間での共有 – 更に LangGraph Studio での視覚化されたプロトタイピングを使用して素早く反復できます。

  • LangChain – LLM アプリケーション開発の効率化のために統合と構成可能なコンポーネントを提供します。

Note : Looking for the JS version of LangGraph? See the JS repo and the JS docs.

 

追加リソース

  • ガイド : ストリーミング、メモリと永続性の追加、そしてデザインパターン (e.g. 分岐、サブグラフ 等) のようなトピックのための簡単で実行可能なコード・スニペット。

  • リファレンス : コアクラス、メソッド、グラフとチェックポイント API の使用方法、そして高レベルの事前構築されたコンポーネントに関する詳細なリファレンス。

  • Examples : LangGraph を始めるためのガイド付きのサンプル。

  • LangChain アカデミー : 無料の構造化されたコースで LangGraph の基礎を学習します。

  • テンプレート : 複製して適応可能な、一般的なエージェント型ワークフロー (ReAct エージェント、メモリ、検索取得 等) のための事前構築されたリファレンスアプリケーション。

  • ケース・スタディ : 業界リーダーが LangGraph を使用して、強力で production-ready な AI アプリケーションを出荷する方法を紹介します。

 

以上



クラスキャット

最近の投稿

  • LangGraph Platform : Get started : クイックスタート
  • LangGraph Platform : 概要
  • LangGraph : Prebuilt エージェント : ユーザインターフェイス
  • LangGraph : Prebuilt エージェント : 配備
  • LangGraph : Prebuilt エージェント : マルチエージェント

タグ

AutoGen (13) ClassCat Press Release (20) ClassCat TF/ONNX Hub (11) DGL 0.5 (14) Eager Execution (7) Edward (17) FLUX.1 (16) Gemini (20) HuggingFace Transformers 4.5 (10) HuggingFace Transformers 4.6 (7) HuggingFace Transformers 4.29 (9) Keras 2 Examples (98) Keras 2 Guide (16) Keras 3 (10) Keras Release Note (17) Kubeflow 1.0 (10) LangChain (45) LangGraph (20) MediaPipe 0.8 (11) Model Context Protocol (16) NNI 1.5 (16) OpenAI Agents SDK (8) OpenAI Cookbook (13) OpenAI platform (10) OpenAI platform 1.x (10) OpenAI ヘルプ (8) TensorFlow 2.0 Advanced Tutorials (33) TensorFlow 2.0 Advanced Tutorials (Alpha) (15) TensorFlow 2.0 Advanced Tutorials (Beta) (16) TensorFlow 2.0 Guide (10) TensorFlow 2.0 Guide (Alpha) (16) TensorFlow 2.0 Guide (Beta) (9) TensorFlow 2.0 Release Note (12) TensorFlow 2.0 Tutorials (20) TensorFlow 2.0 Tutorials (Alpha) (14) TensorFlow 2.0 Tutorials (Beta) (12) TensorFlow 2.4 Guide (24) TensorFlow Deploy (8) TensorFlow Get Started (7) TensorFlow Graphics (7) TensorFlow Probability (9) TensorFlow Programmer's Guide (22) TensorFlow Release Note (18) TensorFlow Tutorials (33) TF-Agents 0.4 (11)
2025年5月
月 火 水 木 金 土 日
 1234
567891011
12131415161718
19202122232425
262728293031  
« 4月   6月 »
© 2025 ClasCat® AI Research | Powered by Minimalist Blog WordPress Theme